--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: w266_model3_BERT_CNN results: [] --- # w266_model3_BERT_CNN This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8379 - Accuracy: {'accuracy': 0.638} - F1: {'f1': 0.6347028754401022} - Precision: {'precision': 0.6330789574164506} - Recall: {'recall': 0.638} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:--------------------------:|:---------------------------------:|:-----------------:| | No log | 1.0 | 125 | 0.9131 | {'accuracy': 0.575} | {'f1': 0.5238639982308713} | {'precision': 0.5763958598091251} | {'recall': 0.575} | | No log | 2.0 | 250 | 0.8958 | {'accuracy': 0.594} | {'f1': 0.5872686350677672} | {'precision': 0.5839805403784284} | {'recall': 0.594} | | No log | 3.0 | 375 | 1.0090 | {'accuracy': 0.579} | {'f1': 0.5805384614353013} | {'precision': 0.5937972757207018} | {'recall': 0.579} | | 0.6603 | 4.0 | 500 | 1.2606 | {'accuracy': 0.576} | {'f1': 0.5817117729696419} | {'precision': 0.5920616341004294} | {'recall': 0.576} | | 0.6603 | 5.0 | 625 | 1.4795 | {'accuracy': 0.577} | {'f1': 0.5838498885025925} | {'precision': 0.6094074383728622} | {'recall': 0.577} | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3