import torch from diffusers import ( StableDiffusionControlNetPipeline, ControlNetModel, EulerAncestralDiscreteScheduler, ) from typing import Dict, List, Any import qrcode import os import base64 from io import BytesIO MODEL_ID = "simdi/colorful_qr" WIDTH = 768 HEIGHT = 768 WEIGHT_PAIRS = [ (0.25, 0.20), (0.25, 0.25), (0.35, 0.20), (0.35, 0.25), (0.45, 0.20), (0.45, 0.25), ] def float_to_pair_index(f: float): length = len(WEIGHT_PAIRS) # If f is less than length, convert to integer and use directly if f < length: return int(f) # If f is greater or equal to length, assume it's a proportion of the length else: # Ensuring f is between 0 and 1 f = max(0.0, min(f, 1.0)) # Convert the float to an index index = int(f * length) # Make sure the index is in the valid range index = min(index, length - 1) return index def select_weight_pair(f: float): return WEIGHT_PAIRS[float_to_pair_index(f)] def load_models(): controlnet_tile = ControlNetModel.from_pretrained( "lllyasviel/control_v11f1e_sd15_tile", torch_dtype=torch.float16, ) controlnet_brightness = ControlNetModel.from_pretrained( "ioclab/control_v1p_sd15_brightness", torch_dtype=torch.float16, ) pipe = StableDiffusionControlNetPipeline.from_pretrained( MODEL_ID, controlnet=[ controlnet_tile, controlnet_brightness, ], torch_dtype=torch.float16, cache_dir="cache", # local_files_only=True, ).to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.enable_xformers_memory_efficient_attention() return pipe def resize_for_condition_image(input_image, resolution: int): input_image = input_image.convert("RGB") W, H = input_image.size k = float(resolution) / min(H, W) H *= k W *= k H = int(round(H / 64.0)) * 64 W = int(round(W / 64.0)) * 64 img = input_image.resize((W, H), resample=Image.LANCZOS) return img def generate_qr_code(content: str): qrcode_generator = qrcode.QRCode( version=1, error_correction=qrcode.ERROR_CORRECT_H, box_size=10, border=2, ) qrcode_generator.clear() qrcode_generator.add_data(content) qrcode_generator.make(fit=True) img = qrcode_generator.make_image(fill_color="black", back_color="white") img = resize_for_condition_image(img, 768) return img def image_to_base64(image): buffered = BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode("utf-8") def generate_image_with_conditioning_scale(**inputs): styles = inputs["styles"] pair = inputs["pair"] pipe = inputs["pipe"] qr_image = inputs["qr_image"] generator = inputs["generator"] images = pipe( prompt=styles, negative_prompt=[""] * len(styles), width=WIDTH, height=HEIGHT, guidance_scale=7.0, generator=generator, num_inference_steps=25, num_images_per_prompt=2, controlnet_conditioning_scale=pair, image=[qr_image] * 2, ).images return [{"data": image_to_base64(image), "format": "png"} for image in images] def generate_image(pipe, inputs): styles = inputs["styles"] content = inputs["content"] art_scale = inputs["art_scale"] with torch.inference_mode(): with torch.autocast("cuda"): qr_image = generate_qr_code(content) generator = torch.Generator() pair = select_weight_pair(art_scale) return generate_image_with_conditioning_scale( styles=styles, pair=pair, pipe=pipe, qr_image=qr_image, generator=generator, ) class EndpointHandler: def __init__(self, path=""): self._model = load_models() def __call__(self, model_input: Dict[str, Any]) -> List[Dict[str, Any]]: images = generate_image(self._model, model_input) return images