File size: 4,238 Bytes
9b34f86 923cb30 9b34f86 d33db96 9b34f86 d33db96 9b34f86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import torch
from diffusers import (
StableDiffusionControlNetPipeline,
ControlNetModel,
EulerAncestralDiscreteScheduler,
)
from typing import Dict, List, Any
import qrcode
import os
import base64
from io import BytesIO
from pyzbar.pyzbar import decode
from PIL import Image
MODEL_ID = "simdi/colorful_qr"
WIDTH = 768
HEIGHT = 768
WEIGHT_PAIRS = [
(0.25, 0.20),
(0.25, 0.25),
(0.35, 0.20),
(0.35, 0.25),
(0.45, 0.20),
(0.45, 0.25),
]
def float_to_pair_index(f: float):
length = len(WEIGHT_PAIRS)
# If f is less than length, convert to integer and use directly
if f < length:
return int(f)
# If f is greater or equal to length, assume it's a proportion of the length
else:
# Ensuring f is between 0 and 1
f = max(0.0, min(f, 1.0))
# Convert the float to an index
index = int(f * length)
# Make sure the index is in the valid range
index = min(index, length - 1)
return index
def select_weight_pair(f: float):
return WEIGHT_PAIRS[float_to_pair_index(f)]
def load_models():
controlnet_tile = ControlNetModel.from_pretrained(
"lllyasviel/control_v11f1e_sd15_tile",
torch_dtype=torch.float16,
)
controlnet_brightness = ControlNetModel.from_pretrained(
"ioclab/control_v1p_sd15_brightness",
torch_dtype=torch.float16,
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
MODEL_ID,
controlnet=[
controlnet_tile,
controlnet_brightness,
],
torch_dtype=torch.float16,
cache_dir="cache",
# local_files_only=True,
).to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
return pipe
def resize_for_condition_image(input_image, resolution: int):
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(round(H / 64.0)) * 64
W = int(round(W / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
return img
def generate_qr_code(content: str):
qrcode_generator = qrcode.QRCode(
version=1,
error_correction=qrcode.ERROR_CORRECT_H,
box_size=10,
border=2,
)
qrcode_generator.clear()
qrcode_generator.add_data(content)
qrcode_generator.make(fit=True)
img = qrcode_generator.make_image(fill_color="black", back_color="white")
img = resize_for_condition_image(img, 768)
return img
def image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def generate_image_with_conditioning_scale(**inputs):
styles = inputs["styles"]
pair = inputs["pair"]
pipe = inputs["pipe"]
qr_image = inputs["qr_image"]
generator = inputs["generator"]
images = pipe(
prompt=styles,
negative_prompt=[""] * len(styles),
width=WIDTH,
height=HEIGHT,
guidance_scale=7.0,
generator=generator,
num_inference_steps=25,
num_images_per_prompt=2,
controlnet_conditioning_scale=pair,
image=[qr_image] * 2,
).images
return [{"data": image_to_base64(image), "format": "png"} for image in images]
def generate_image(pipe, inputs):
styles = inputs["styles"]
content = inputs["content"]
art_scale = inputs["art_scale"]
with torch.inference_mode():
with torch.autocast("cuda"):
qr_image = generate_qr_code(content)
generator = torch.Generator()
pair = select_weight_pair(art_scale)
return generate_image_with_conditioning_scale(
styles=styles,
pair=pair,
pipe=pipe,
qr_image=qr_image,
generator=generator,
)
class EndpointHandler:
def __init__(self, path=""):
self._model = load_models()
def __call__(self, model_input: Dict[str, Any]) -> List[Dict[str, Any]]:
images = generate_image(self._model, model_input)
return images
|