aotrih commited on
Commit
620fcd0
·
verified ·
1 Parent(s): 326f1ec

whisperkittools-86c1a11b9398e0201bcfca4f9cdf2cb8adc41f73 generated files: openai_whisper-tiny.en

Browse files
openai_whisper-tiny.en/AudioEncoder.mlmodelc/analytics/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:791fd26314a6649d384e26253b1e462ddb20be4e9a0cd32383aab8dea3048e68
3
  size 243
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaaaa6671a96a359a0bbd5e97885246dcc17f7435b6ffad8d871bb940964500b
3
  size 243
openai_whisper-tiny.en/AudioEncoder.mlmodelc/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8cab3672b1631440fb8668cd06aff27b1571d578595f8e01470ed43feed1f733
3
- size 349
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:325b182d0a4266730a81795ae6b7a787b5111dd091500fc0c04dedf610015d46
3
+ size 347
openai_whisper-tiny.en/AudioEncoder.mlmodelc/metadata.json CHANGED
@@ -46,8 +46,8 @@
46
  },
47
  "userDefinedMetadata" : {
48
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
49
- "com.github.apple.coremltools.source" : "torch==2.4.1",
50
- "com.github.apple.coremltools.version" : "8.0b2"
51
  },
52
  "inputSchema" : [
53
  {
 
46
  },
47
  "userDefinedMetadata" : {
48
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
49
+ "com.github.apple.coremltools.version" : "8.0",
50
+ "com.github.apple.coremltools.source" : "torch==2.4.1"
51
  },
52
  "inputSchema" : [
53
  {
openai_whisper-tiny.en/AudioEncoder.mlmodelc/model.mil CHANGED
@@ -1,25 +1,25 @@
1
  program(1.0)
2
- [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0b2"}})]
3
  {
4
  func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
5
- tensor<int32, [2]> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, [2]>([1, 1])];
6
- tensor<int32, [2]> var_40 = const()[name = tensor<string, []>("op_40"), val = tensor<int32, [2]>([1, 1])];
7
- tensor<int32, []> var_45 = const()[name = tensor<string, []>("op_45"), val = tensor<int32, []>(1)];
8
  tensor<string, []> var_50_pad_type_0 = const()[name = tensor<string, []>("op_50_pad_type_0"), val = tensor<string, []>("custom")];
9
  tensor<int32, [4]> var_50_pad_0 = const()[name = tensor<string, []>("op_50_pad_0"), val = tensor<int32, [4]>([0, 0, 1, 1])];
 
 
 
10
  tensor<fp16, [384, 80, 1, 3]> var_25_to_fp16 = const()[name = tensor<string, []>("op_25_to_fp16"), val = tensor<fp16, [384, 80, 1, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
11
  tensor<fp16, [384]> var_31_to_fp16 = const()[name = tensor<string, []>("op_31_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(184448)))];
12
- tensor<fp16, [1, 384, 1, 3000]> var_50_cast_fp16 = conv(bias = var_31_to_fp16, dilations = var_40, groups = var_45, pad = var_50_pad_0, pad_type = var_50_pad_type_0, strides = var_34, weight = var_25_to_fp16, x = melspectrogram_features)[name = tensor<string, []>("op_50_cast_fp16")];
13
  tensor<string, []> hidden_states_1_mode_0 = const()[name = tensor<string, []>("hidden_states_1_mode_0"), val = tensor<string, []>("EXACT")];
14
  tensor<fp16, [1, 384, 1, 3000]> hidden_states_1_cast_fp16 = gelu(mode = hidden_states_1_mode_0, x = var_50_cast_fp16)[name = tensor<string, []>("hidden_states_1_cast_fp16")];
15
- tensor<int32, [2]> var_74 = const()[name = tensor<string, []>("op_74"), val = tensor<int32, [2]>([2, 2])];
16
- tensor<int32, [2]> var_80 = const()[name = tensor<string, []>("op_80"), val = tensor<int32, [2]>([1, 1])];
17
- tensor<int32, []> var_85 = const()[name = tensor<string, []>("op_85"), val = tensor<int32, []>(1)];
18
  tensor<string, []> var_90_pad_type_0 = const()[name = tensor<string, []>("op_90_pad_type_0"), val = tensor<string, []>("custom")];
19
  tensor<int32, [4]> var_90_pad_0 = const()[name = tensor<string, []>("op_90_pad_0"), val = tensor<int32, [4]>([0, 0, 1, 1])];
 
 
 
20
  tensor<fp16, [384, 384, 1, 3]> var_65_to_fp16 = const()[name = tensor<string, []>("op_65_to_fp16"), val = tensor<fp16, [384, 384, 1, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(185280)))];
21
  tensor<fp16, [384]> var_71_to_fp16 = const()[name = tensor<string, []>("op_71_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1070080)))];
22
- tensor<fp16, [1, 384, 1, 1500]> var_90_cast_fp16 = conv(bias = var_71_to_fp16, dilations = var_80, groups = var_85, pad = var_90_pad_0, pad_type = var_90_pad_type_0, strides = var_74, weight = var_65_to_fp16, x = hidden_states_1_cast_fp16)[name = tensor<string, []>("op_90_cast_fp16")];
23
  tensor<string, []> hidden_states_3_mode_0 = const()[name = tensor<string, []>("hidden_states_3_mode_0"), val = tensor<string, []>("EXACT")];
24
  tensor<fp16, [1, 384, 1, 1500]> hidden_states_3_cast_fp16 = gelu(mode = hidden_states_3_mode_0, x = var_90_cast_fp16)[name = tensor<string, []>("hidden_states_3_cast_fp16")];
25
  tensor<fp16, [1, 384, 1, 1500]> var_108_to_fp16 = const()[name = tensor<string, []>("op_108_to_fp16"), val = tensor<fp16, [1, 384, 1, 1500]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1070912)))];
@@ -35,26 +35,29 @@ program(1.0)
35
  tensor<fp16, [384]> obj_1_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_1_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2225472)))];
36
  tensor<fp16, []> obj_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
37
  tensor<fp16, [1, 384, 1, 1500]> obj_1_cast_fp16 = batch_norm(beta = obj_1_beta_0_to_fp16, epsilon = obj_1_epsilon_0_to_fp16, gamma = obj_1_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_1_cast_fp16)[name = tensor<string, []>("obj_1_cast_fp16")];
38
- tensor<int32, [2]> var_162 = const()[name = tensor<string, []>("op_162"), val = tensor<int32, [2]>([1, 1])];
39
- tensor<int32, [2]> var_164 = const()[name = tensor<string, []>("op_164"), val = tensor<int32, [2]>([1, 1])];
40
- tensor<string, []> query_1_pad_type_0 = const()[name = tensor<string, []>("query_1_pad_type_0"), val = tensor<string, []>("custom")];
41
  tensor<int32, [4]> query_1_pad_0 = const()[name = tensor<string, []>("query_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
42
  tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2226304)))];
43
  tensor<fp16, [384]> layers_0_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2521280)))];
44
- tensor<fp16, [1, 384, 1, 1500]> query_1_cast_fp16 = conv(bias = layers_0_self_attn_q_proj_bias_to_fp16, dilations = var_164, groups = var_129, pad = query_1_pad_0, pad_type = query_1_pad_type_0, strides = var_162, weight = layers_0_self_attn_q_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("query_1_cast_fp16")];
45
- tensor<int32, [2]> var_168 = const()[name = tensor<string, []>("op_168"), val = tensor<int32, [2]>([1, 1])];
46
- tensor<int32, [2]> var_170 = const()[name = tensor<string, []>("op_170"), val = tensor<int32, [2]>([1, 1])];
47
- tensor<string, []> key_1_pad_type_0 = const()[name = tensor<string, []>("key_1_pad_type_0"), val = tensor<string, []>("custom")];
48
  tensor<int32, [4]> key_1_pad_0 = const()[name = tensor<string, []>("key_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
49
  tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2522112)))];
50
- tensor<fp16, [1, 384, 1, 1500]> key_1_cast_fp16 = conv(dilations = var_170, groups = var_129, pad = key_1_pad_0, pad_type = key_1_pad_type_0, strides = var_168, weight = layers_0_self_attn_k_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("key_1_cast_fp16")];
51
- tensor<int32, [2]> var_175 = const()[name = tensor<string, []>("op_175"), val = tensor<int32, [2]>([1, 1])];
52
- tensor<int32, [2]> var_177 = const()[name = tensor<string, []>("op_177"), val = tensor<int32, [2]>([1, 1])];
53
- tensor<string, []> value_1_pad_type_0 = const()[name = tensor<string, []>("value_1_pad_type_0"), val = tensor<string, []>("custom")];
54
  tensor<int32, [4]> value_1_pad_0 = const()[name = tensor<string, []>("value_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
55
  tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2817088)))];
56
  tensor<fp16, [384]> layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3112064)))];
57
- tensor<fp16, [1, 384, 1, 1500]> value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = var_177, groups = var_129, pad = value_1_pad_0, pad_type = value_1_pad_type_0, strides = var_175, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("value_1_cast_fp16")];
58
  tensor<int32, [4]> var_184_begin_0 = const()[name = tensor<string, []>("op_184_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
59
  tensor<int32, [4]> var_184_end_0 = const()[name = tensor<string, []>("op_184_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
60
  tensor<bool, [4]> var_184_end_mask_0 = const()[name = tensor<string, []>("op_184_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
@@ -407,13 +410,14 @@ program(1.0)
407
  tensor<fp16, [1, 64, 1, 1500]> var_603_cast_fp16 = concat(axis = var_118, interleave = var_603_interleave_0, values = (var_585_cast_fp16, var_587_cast_fp16, var_589_cast_fp16, var_591_cast_fp16))[name = tensor<string, []>("op_603_cast_fp16")];
408
  tensor<bool, []> input_1_interleave_0 = const()[name = tensor<string, []>("input_1_interleave_0"), val = tensor<bool, []>(false)];
409
  tensor<fp16, [1, 384, 1, 1500]> input_1_cast_fp16 = concat(axis = var_129, interleave = input_1_interleave_0, values = (var_593_cast_fp16, var_595_cast_fp16, var_597_cast_fp16, var_599_cast_fp16, var_601_cast_fp16, var_603_cast_fp16))[name = tensor<string, []>("input_1_cast_fp16")];
410
- tensor<int32, [2]> var_608 = const()[name = tensor<string, []>("op_608"), val = tensor<int32, [2]>([1, 1])];
411
- tensor<int32, [2]> var_610 = const()[name = tensor<string, []>("op_610"), val = tensor<int32, [2]>([1, 1])];
412
- tensor<string, []> obj_3_pad_type_0 = const()[name = tensor<string, []>("obj_3_pad_type_0"), val = tensor<string, []>("custom")];
413
  tensor<int32, [4]> obj_3_pad_0 = const()[name = tensor<string, []>("obj_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
414
  tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3112896)))];
415
  tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3407872)))];
416
- tensor<fp16, [1, 384, 1, 1500]> obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_610, groups = var_129, pad = obj_3_pad_0, pad_type = obj_3_pad_type_0, strides = var_608, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_3_cast_fp16")];
417
  tensor<fp16, [1, 384, 1, 1500]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
418
  tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
419
  tensor<fp16, []> var_622_to_fp16 = const()[name = tensor<string, []>("op_622_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -422,22 +426,24 @@ program(1.0)
422
  tensor<fp16, [384]> input_3_beta_0_to_fp16 = const()[name = tensor<string, []>("input_3_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3409536)))];
423
  tensor<fp16, []> input_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
424
  tensor<fp16, [1, 384, 1, 1500]> input_3_cast_fp16 = batch_norm(beta = input_3_beta_0_to_fp16, epsilon = input_3_epsilon_0_to_fp16, gamma = input_3_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_3_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
425
- tensor<int32, [2]> var_634 = const()[name = tensor<string, []>("op_634"), val = tensor<int32, [2]>([1, 1])];
426
- tensor<int32, [2]> var_636 = const()[name = tensor<string, []>("op_636"), val = tensor<int32, [2]>([1, 1])];
427
- tensor<string, []> input_5_pad_type_0 = const()[name = tensor<string, []>("input_5_pad_type_0"), val = tensor<string, []>("custom")];
428
  tensor<int32, [4]> input_5_pad_0 = const()[name = tensor<string, []>("input_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
429
  tensor<fp16, [1536, 384, 1, 1]> layers_0_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3410368)))];
430
  tensor<fp16, [1536]> layers_0_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4590080)))];
431
- tensor<fp16, [1, 1536, 1, 1500]> input_5_cast_fp16 = conv(bias = layers_0_fc1_bias_to_fp16, dilations = var_636, groups = var_129, pad = input_5_pad_0, pad_type = input_5_pad_type_0, strides = var_634, weight = layers_0_fc1_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
432
  tensor<string, []> input_7_mode_0 = const()[name = tensor<string, []>("input_7_mode_0"), val = tensor<string, []>("EXACT")];
433
  tensor<fp16, [1, 1536, 1, 1500]> input_7_cast_fp16 = gelu(mode = input_7_mode_0, x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
434
- tensor<int32, [2]> var_642 = const()[name = tensor<string, []>("op_642"), val = tensor<int32, [2]>([1, 1])];
435
- tensor<int32, [2]> var_644 = const()[name = tensor<string, []>("op_644"), val = tensor<int32, [2]>([1, 1])];
436
- tensor<string, []> hidden_states_5_pad_type_0 = const()[name = tensor<string, []>("hidden_states_5_pad_type_0"), val = tensor<string, []>("custom")];
437
  tensor<int32, [4]> hidden_states_5_pad_0 = const()[name = tensor<string, []>("hidden_states_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
438
  tensor<fp16, [384, 1536, 1, 1]> layers_0_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4593216)))];
439
  tensor<fp16, [384]> layers_0_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5772928)))];
440
- tensor<fp16, [1, 384, 1, 1500]> hidden_states_5_cast_fp16 = conv(bias = layers_0_fc2_bias_to_fp16, dilations = var_644, groups = var_129, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = var_642, weight = layers_0_fc2_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("hidden_states_5_cast_fp16")];
441
  tensor<fp16, [1, 384, 1, 1500]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
442
  tensor<int32, []> var_651 = const()[name = tensor<string, []>("op_651"), val = tensor<int32, []>(3)];
443
  tensor<int32, []> var_662 = const()[name = tensor<string, []>("op_662"), val = tensor<int32, []>(1)];
@@ -448,26 +454,29 @@ program(1.0)
448
  tensor<fp16, [384]> obj_5_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5774592)))];
449
  tensor<fp16, []> obj_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
450
  tensor<fp16, [1, 384, 1, 1500]> obj_5_cast_fp16 = batch_norm(beta = obj_5_beta_0_to_fp16, epsilon = obj_5_epsilon_0_to_fp16, gamma = obj_5_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_5_cast_fp16)[name = tensor<string, []>("obj_5_cast_fp16")];
451
- tensor<int32, [2]> var_695 = const()[name = tensor<string, []>("op_695"), val = tensor<int32, [2]>([1, 1])];
452
- tensor<int32, [2]> var_697 = const()[name = tensor<string, []>("op_697"), val = tensor<int32, [2]>([1, 1])];
453
- tensor<string, []> query_3_pad_type_0 = const()[name = tensor<string, []>("query_3_pad_type_0"), val = tensor<string, []>("custom")];
454
  tensor<int32, [4]> query_3_pad_0 = const()[name = tensor<string, []>("query_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
455
  tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5775424)))];
456
  tensor<fp16, [384]> layers_1_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6070400)))];
457
- tensor<fp16, [1, 384, 1, 1500]> query_3_cast_fp16 = conv(bias = layers_1_self_attn_q_proj_bias_to_fp16, dilations = var_697, groups = var_662, pad = query_3_pad_0, pad_type = query_3_pad_type_0, strides = var_695, weight = layers_1_self_attn_q_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor<string, []>("query_3_cast_fp16")];
458
- tensor<int32, [2]> var_701 = const()[name = tensor<string, []>("op_701"), val = tensor<int32, [2]>([1, 1])];
459
- tensor<int32, [2]> var_703 = const()[name = tensor<string, []>("op_703"), val = tensor<int32, [2]>([1, 1])];
460
- tensor<string, []> key_3_pad_type_0 = const()[name = tensor<string, []>("key_3_pad_type_0"), val = tensor<string, []>("custom")];
461
  tensor<int32, [4]> key_3_pad_0 = const()[name = tensor<string, []>("key_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
462
  tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6071232)))];
463
- tensor<fp16, [1, 384, 1, 1500]> key_3_cast_fp16 = conv(dilations = var_703, groups = var_662, pad = key_3_pad_0, pad_type = key_3_pad_type_0, strides = var_701, weight = layers_1_self_attn_k_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor<string, []>("key_3_cast_fp16")];
464
- tensor<int32, [2]> var_708 = const()[name = tensor<string, []>("op_708"), val = tensor<int32, [2]>([1, 1])];
465
- tensor<int32, [2]> var_710 = const()[name = tensor<string, []>("op_710"), val = tensor<int32, [2]>([1, 1])];
466
- tensor<string, []> value_3_pad_type_0 = const()[name = tensor<string, []>("value_3_pad_type_0"), val = tensor<string, []>("custom")];
467
  tensor<int32, [4]> value_3_pad_0 = const()[name = tensor<string, []>("value_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
468
  tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6366208)))];
469
  tensor<fp16, [384]> layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6661184)))];
470
- tensor<fp16, [1, 384, 1, 1500]> value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = var_710, groups = var_662, pad = value_3_pad_0, pad_type = value_3_pad_type_0, strides = var_708, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor<string, []>("value_3_cast_fp16")];
471
  tensor<int32, [4]> var_717_begin_0 = const()[name = tensor<string, []>("op_717_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
472
  tensor<int32, [4]> var_717_end_0 = const()[name = tensor<string, []>("op_717_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
473
  tensor<bool, [4]> var_717_end_mask_0 = const()[name = tensor<string, []>("op_717_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
@@ -820,13 +829,14 @@ program(1.0)
820
  tensor<fp16, [1, 64, 1, 1500]> var_1136_cast_fp16 = concat(axis = var_651, interleave = var_1136_interleave_0, values = (var_1118_cast_fp16, var_1120_cast_fp16, var_1122_cast_fp16, var_1124_cast_fp16))[name = tensor<string, []>("op_1136_cast_fp16")];
821
  tensor<bool, []> input_9_interleave_0 = const()[name = tensor<string, []>("input_9_interleave_0"), val = tensor<bool, []>(false)];
822
  tensor<fp16, [1, 384, 1, 1500]> input_9_cast_fp16 = concat(axis = var_662, interleave = input_9_interleave_0, values = (var_1126_cast_fp16, var_1128_cast_fp16, var_1130_cast_fp16, var_1132_cast_fp16, var_1134_cast_fp16, var_1136_cast_fp16))[name = tensor<string, []>("input_9_cast_fp16")];
823
- tensor<int32, [2]> var_1141 = const()[name = tensor<string, []>("op_1141"), val = tensor<int32, [2]>([1, 1])];
824
- tensor<int32, [2]> var_1143 = const()[name = tensor<string, []>("op_1143"), val = tensor<int32, [2]>([1, 1])];
825
- tensor<string, []> obj_7_pad_type_0 = const()[name = tensor<string, []>("obj_7_pad_type_0"), val = tensor<string, []>("custom")];
826
  tensor<int32, [4]> obj_7_pad_0 = const()[name = tensor<string, []>("obj_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
827
  tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6662016)))];
828
  tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6956992)))];
829
- tensor<fp16, [1, 384, 1, 1500]> obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_1143, groups = var_662, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_1141, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
830
  tensor<fp16, [1, 384, 1, 1500]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
831
  tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
832
  tensor<fp16, []> var_1155_to_fp16 = const()[name = tensor<string, []>("op_1155_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -835,22 +845,24 @@ program(1.0)
835
  tensor<fp16, [384]> input_11_beta_0_to_fp16 = const()[name = tensor<string, []>("input_11_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6958656)))];
836
  tensor<fp16, []> input_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
837
  tensor<fp16, [1, 384, 1, 1500]> input_11_cast_fp16 = batch_norm(beta = input_11_beta_0_to_fp16, epsilon = input_11_epsilon_0_to_fp16, gamma = input_11_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_7_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
838
- tensor<int32, [2]> var_1167 = const()[name = tensor<string, []>("op_1167"), val = tensor<int32, [2]>([1, 1])];
839
- tensor<int32, [2]> var_1169 = const()[name = tensor<string, []>("op_1169"), val = tensor<int32, [2]>([1, 1])];
840
- tensor<string, []> input_13_pad_type_0 = const()[name = tensor<string, []>("input_13_pad_type_0"), val = tensor<string, []>("custom")];
841
  tensor<int32, [4]> input_13_pad_0 = const()[name = tensor<string, []>("input_13_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
842
  tensor<fp16, [1536, 384, 1, 1]> layers_1_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6959488)))];
843
  tensor<fp16, [1536]> layers_1_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8139200)))];
844
- tensor<fp16, [1, 1536, 1, 1500]> input_13_cast_fp16 = conv(bias = layers_1_fc1_bias_to_fp16, dilations = var_1169, groups = var_662, pad = input_13_pad_0, pad_type = input_13_pad_type_0, strides = var_1167, weight = layers_1_fc1_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("input_13_cast_fp16")];
845
  tensor<string, []> input_15_mode_0 = const()[name = tensor<string, []>("input_15_mode_0"), val = tensor<string, []>("EXACT")];
846
  tensor<fp16, [1, 1536, 1, 1500]> input_15_cast_fp16 = gelu(mode = input_15_mode_0, x = input_13_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
847
- tensor<int32, [2]> var_1175 = const()[name = tensor<string, []>("op_1175"), val = tensor<int32, [2]>([1, 1])];
848
- tensor<int32, [2]> var_1177 = const()[name = tensor<string, []>("op_1177"), val = tensor<int32, [2]>([1, 1])];
849
- tensor<string, []> hidden_states_7_pad_type_0 = const()[name = tensor<string, []>("hidden_states_7_pad_type_0"), val = tensor<string, []>("custom")];
850
  tensor<int32, [4]> hidden_states_7_pad_0 = const()[name = tensor<string, []>("hidden_states_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
851
  tensor<fp16, [384, 1536, 1, 1]> layers_1_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8142336)))];
852
  tensor<fp16, [384]> layers_1_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9322048)))];
853
- tensor<fp16, [1, 384, 1, 1500]> hidden_states_7_cast_fp16 = conv(bias = layers_1_fc2_bias_to_fp16, dilations = var_1177, groups = var_662, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = var_1175, weight = layers_1_fc2_weight_to_fp16, x = input_15_cast_fp16)[name = tensor<string, []>("hidden_states_7_cast_fp16")];
854
  tensor<fp16, [1, 384, 1, 1500]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
855
  tensor<int32, []> var_1184 = const()[name = tensor<string, []>("op_1184"), val = tensor<int32, []>(3)];
856
  tensor<int32, []> var_1195 = const()[name = tensor<string, []>("op_1195"), val = tensor<int32, []>(1)];
@@ -861,26 +873,29 @@ program(1.0)
861
  tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9323712)))];
862
  tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
863
  tensor<fp16, [1, 384, 1, 1500]> obj_9_cast_fp16 = batch_norm(beta = obj_9_beta_0_to_fp16, epsilon = obj_9_epsilon_0_to_fp16, gamma = obj_9_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_9_cast_fp16)[name = tensor<string, []>("obj_9_cast_fp16")];
864
- tensor<int32, [2]> var_1228 = const()[name = tensor<string, []>("op_1228"), val = tensor<int32, [2]>([1, 1])];
865
- tensor<int32, [2]> var_1230 = const()[name = tensor<string, []>("op_1230"), val = tensor<int32, [2]>([1, 1])];
866
- tensor<string, []> query_5_pad_type_0 = const()[name = tensor<string, []>("query_5_pad_type_0"), val = tensor<string, []>("custom")];
867
  tensor<int32, [4]> query_5_pad_0 = const()[name = tensor<string, []>("query_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
868
  tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9324544)))];
869
  tensor<fp16, [384]> layers_2_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9619520)))];
870
- tensor<fp16, [1, 384, 1, 1500]> query_5_cast_fp16 = conv(bias = layers_2_self_attn_q_proj_bias_to_fp16, dilations = var_1230, groups = var_1195, pad = query_5_pad_0, pad_type = query_5_pad_type_0, strides = var_1228, weight = layers_2_self_attn_q_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor<string, []>("query_5_cast_fp16")];
871
- tensor<int32, [2]> var_1234 = const()[name = tensor<string, []>("op_1234"), val = tensor<int32, [2]>([1, 1])];
872
- tensor<int32, [2]> var_1236 = const()[name = tensor<string, []>("op_1236"), val = tensor<int32, [2]>([1, 1])];
873
- tensor<string, []> key_5_pad_type_0 = const()[name = tensor<string, []>("key_5_pad_type_0"), val = tensor<string, []>("custom")];
874
  tensor<int32, [4]> key_5_pad_0 = const()[name = tensor<string, []>("key_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
875
  tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9620352)))];
876
- tensor<fp16, [1, 384, 1, 1500]> key_5_cast_fp16 = conv(dilations = var_1236, groups = var_1195, pad = key_5_pad_0, pad_type = key_5_pad_type_0, strides = var_1234, weight = layers_2_self_attn_k_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor<string, []>("key_5_cast_fp16")];
877
- tensor<int32, [2]> var_1241 = const()[name = tensor<string, []>("op_1241"), val = tensor<int32, [2]>([1, 1])];
878
- tensor<int32, [2]> var_1243 = const()[name = tensor<string, []>("op_1243"), val = tensor<int32, [2]>([1, 1])];
879
- tensor<string, []> value_5_pad_type_0 = const()[name = tensor<string, []>("value_5_pad_type_0"), val = tensor<string, []>("custom")];
880
  tensor<int32, [4]> value_5_pad_0 = const()[name = tensor<string, []>("value_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
881
  tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9915328)))];
882
  tensor<fp16, [384]> layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10210304)))];
883
- tensor<fp16, [1, 384, 1, 1500]> value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = var_1243, groups = var_1195, pad = value_5_pad_0, pad_type = value_5_pad_type_0, strides = var_1241, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor<string, []>("value_5_cast_fp16")];
884
  tensor<int32, [4]> var_1250_begin_0 = const()[name = tensor<string, []>("op_1250_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
885
  tensor<int32, [4]> var_1250_end_0 = const()[name = tensor<string, []>("op_1250_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
886
  tensor<bool, [4]> var_1250_end_mask_0 = const()[name = tensor<string, []>("op_1250_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
@@ -1233,13 +1248,14 @@ program(1.0)
1233
  tensor<fp16, [1, 64, 1, 1500]> var_1669_cast_fp16 = concat(axis = var_1184, interleave = var_1669_interleave_0, values = (var_1651_cast_fp16, var_1653_cast_fp16, var_1655_cast_fp16, var_1657_cast_fp16))[name = tensor<string, []>("op_1669_cast_fp16")];
1234
  tensor<bool, []> input_17_interleave_0 = const()[name = tensor<string, []>("input_17_interleave_0"), val = tensor<bool, []>(false)];
1235
  tensor<fp16, [1, 384, 1, 1500]> input_17_cast_fp16 = concat(axis = var_1195, interleave = input_17_interleave_0, values = (var_1659_cast_fp16, var_1661_cast_fp16, var_1663_cast_fp16, var_1665_cast_fp16, var_1667_cast_fp16, var_1669_cast_fp16))[name = tensor<string, []>("input_17_cast_fp16")];
1236
- tensor<int32, [2]> var_1674 = const()[name = tensor<string, []>("op_1674"), val = tensor<int32, [2]>([1, 1])];
1237
- tensor<int32, [2]> var_1676 = const()[name = tensor<string, []>("op_1676"), val = tensor<int32, [2]>([1, 1])];
1238
- tensor<string, []> obj_11_pad_type_0 = const()[name = tensor<string, []>("obj_11_pad_type_0"), val = tensor<string, []>("custom")];
1239
  tensor<int32, [4]> obj_11_pad_0 = const()[name = tensor<string, []>("obj_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
1240
  tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10211136)))];
1241
  tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506112)))];
1242
- tensor<fp16, [1, 384, 1, 1500]> obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_1676, groups = var_1195, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_1674, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_17_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
1243
  tensor<fp16, [1, 384, 1, 1500]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
1244
  tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
1245
  tensor<fp16, []> var_1688_to_fp16 = const()[name = tensor<string, []>("op_1688_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -1248,22 +1264,24 @@ program(1.0)
1248
  tensor<fp16, [384]> input_19_beta_0_to_fp16 = const()[name = tensor<string, []>("input_19_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10507776)))];
1249
  tensor<fp16, []> input_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1250
  tensor<fp16, [1, 384, 1, 1500]> input_19_cast_fp16 = batch_norm(beta = input_19_beta_0_to_fp16, epsilon = input_19_epsilon_0_to_fp16, gamma = input_19_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_11_cast_fp16)[name = tensor<string, []>("input_19_cast_fp16")];
1251
- tensor<int32, [2]> var_1700 = const()[name = tensor<string, []>("op_1700"), val = tensor<int32, [2]>([1, 1])];
1252
- tensor<int32, [2]> var_1702 = const()[name = tensor<string, []>("op_1702"), val = tensor<int32, [2]>([1, 1])];
1253
- tensor<string, []> input_21_pad_type_0 = const()[name = tensor<string, []>("input_21_pad_type_0"), val = tensor<string, []>("custom")];
1254
  tensor<int32, [4]> input_21_pad_0 = const()[name = tensor<string, []>("input_21_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
1255
  tensor<fp16, [1536, 384, 1, 1]> layers_2_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10508608)))];
1256
  tensor<fp16, [1536]> layers_2_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11688320)))];
1257
- tensor<fp16, [1, 1536, 1, 1500]> input_21_cast_fp16 = conv(bias = layers_2_fc1_bias_to_fp16, dilations = var_1702, groups = var_1195, pad = input_21_pad_0, pad_type = input_21_pad_type_0, strides = var_1700, weight = layers_2_fc1_weight_to_fp16, x = input_19_cast_fp16)[name = tensor<string, []>("input_21_cast_fp16")];
1258
  tensor<string, []> input_23_mode_0 = const()[name = tensor<string, []>("input_23_mode_0"), val = tensor<string, []>("EXACT")];
1259
  tensor<fp16, [1, 1536, 1, 1500]> input_23_cast_fp16 = gelu(mode = input_23_mode_0, x = input_21_cast_fp16)[name = tensor<string, []>("input_23_cast_fp16")];
1260
- tensor<int32, [2]> var_1708 = const()[name = tensor<string, []>("op_1708"), val = tensor<int32, [2]>([1, 1])];
1261
- tensor<int32, [2]> var_1710 = const()[name = tensor<string, []>("op_1710"), val = tensor<int32, [2]>([1, 1])];
1262
- tensor<string, []> hidden_states_9_pad_type_0 = const()[name = tensor<string, []>("hidden_states_9_pad_type_0"), val = tensor<string, []>("custom")];
1263
  tensor<int32, [4]> hidden_states_9_pad_0 = const()[name = tensor<string, []>("hidden_states_9_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
1264
  tensor<fp16, [384, 1536, 1, 1]> layers_2_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11691456)))];
1265
  tensor<fp16, [384]> layers_2_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12871168)))];
1266
- tensor<fp16, [1, 384, 1, 1500]> hidden_states_9_cast_fp16 = conv(bias = layers_2_fc2_bias_to_fp16, dilations = var_1710, groups = var_1195, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_1708, weight = layers_2_fc2_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("hidden_states_9_cast_fp16")];
1267
  tensor<fp16, [1, 384, 1, 1500]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
1268
  tensor<int32, []> var_1717 = const()[name = tensor<string, []>("op_1717"), val = tensor<int32, []>(3)];
1269
  tensor<int32, []> var_1728 = const()[name = tensor<string, []>("op_1728"), val = tensor<int32, []>(1)];
@@ -1274,26 +1292,29 @@ program(1.0)
1274
  tensor<fp16, [384]> obj_13_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_13_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872832)))];
1275
  tensor<fp16, []> obj_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1276
  tensor<fp16, [1, 384, 1, 1500]> obj_13_cast_fp16 = batch_norm(beta = obj_13_beta_0_to_fp16, epsilon = obj_13_epsilon_0_to_fp16, gamma = obj_13_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_13_cast_fp16)[name = tensor<string, []>("obj_13_cast_fp16")];
1277
- tensor<int32, [2]> var_1761 = const()[name = tensor<string, []>("op_1761"), val = tensor<int32, [2]>([1, 1])];
1278
- tensor<int32, [2]> var_1763 = const()[name = tensor<string, []>("op_1763"), val = tensor<int32, [2]>([1, 1])];
1279
- tensor<string, []> query_pad_type_0 = const()[name = tensor<string, []>("query_pad_type_0"), val = tensor<string, []>("custom")];
1280
  tensor<int32, [4]> query_pad_0 = const()[name = tensor<string, []>("query_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
1281
  tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12873664)))];
1282
  tensor<fp16, [384]> layers_3_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13168640)))];
1283
- tensor<fp16, [1, 384, 1, 1500]> query_cast_fp16 = conv(bias = layers_3_self_attn_q_proj_bias_to_fp16, dilations = var_1763, groups = var_1728, pad = query_pad_0, pad_type = query_pad_type_0, strides = var_1761, weight = layers_3_self_attn_q_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("query_cast_fp16")];
1284
- tensor<int32, [2]> var_1767 = const()[name = tensor<string, []>("op_1767"), val = tensor<int32, [2]>([1, 1])];
1285
- tensor<int32, [2]> var_1769 = const()[name = tensor<string, []>("op_1769"), val = tensor<int32, [2]>([1, 1])];
1286
- tensor<string, []> key_pad_type_0 = const()[name = tensor<string, []>("key_pad_type_0"), val = tensor<string, []>("custom")];
1287
  tensor<int32, [4]> key_pad_0 = const()[name = tensor<string, []>("key_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
1288
  tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13169472)))];
1289
- tensor<fp16, [1, 384, 1, 1500]> key_cast_fp16 = conv(dilations = var_1769, groups = var_1728, pad = key_pad_0, pad_type = key_pad_type_0, strides = var_1767, weight = layers_3_self_attn_k_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("key_cast_fp16")];
1290
- tensor<int32, [2]> var_1774 = const()[name = tensor<string, []>("op_1774"), val = tensor<int32, [2]>([1, 1])];
1291
- tensor<int32, [2]> var_1776 = const()[name = tensor<string, []>("op_1776"), val = tensor<int32, [2]>([1, 1])];
1292
- tensor<string, []> value_pad_type_0 = const()[name = tensor<string, []>("value_pad_type_0"), val = tensor<string, []>("custom")];
1293
  tensor<int32, [4]> value_pad_0 = const()[name = tensor<string, []>("value_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
1294
  tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13464448)))];
1295
  tensor<fp16, [384]> layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13759424)))];
1296
- tensor<fp16, [1, 384, 1, 1500]> value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = var_1776, groups = var_1728, pad = value_pad_0, pad_type = value_pad_type_0, strides = var_1774, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("value_cast_fp16")];
1297
  tensor<int32, [4]> var_1783_begin_0 = const()[name = tensor<string, []>("op_1783_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1298
  tensor<int32, [4]> var_1783_end_0 = const()[name = tensor<string, []>("op_1783_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
1299
  tensor<bool, [4]> var_1783_end_mask_0 = const()[name = tensor<string, []>("op_1783_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
@@ -1646,13 +1667,14 @@ program(1.0)
1646
  tensor<fp16, [1, 64, 1, 1500]> var_2202_cast_fp16 = concat(axis = var_1717, interleave = var_2202_interleave_0, values = (var_2184_cast_fp16, var_2186_cast_fp16, var_2188_cast_fp16, var_2190_cast_fp16))[name = tensor<string, []>("op_2202_cast_fp16")];
1647
  tensor<bool, []> input_25_interleave_0 = const()[name = tensor<string, []>("input_25_interleave_0"), val = tensor<bool, []>(false)];
1648
  tensor<fp16, [1, 384, 1, 1500]> input_25_cast_fp16 = concat(axis = var_1728, interleave = input_25_interleave_0, values = (var_2192_cast_fp16, var_2194_cast_fp16, var_2196_cast_fp16, var_2198_cast_fp16, var_2200_cast_fp16, var_2202_cast_fp16))[name = tensor<string, []>("input_25_cast_fp16")];
1649
- tensor<int32, [2]> var_2207 = const()[name = tensor<string, []>("op_2207"), val = tensor<int32, [2]>([1, 1])];
1650
- tensor<int32, [2]> var_2209 = const()[name = tensor<string, []>("op_2209"), val = tensor<int32, [2]>([1, 1])];
1651
- tensor<string, []> obj_pad_type_0 = const()[name = tensor<string, []>("obj_pad_type_0"), val = tensor<string, []>("custom")];
1652
  tensor<int32, [4]> obj_pad_0 = const()[name = tensor<string, []>("obj_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
1653
  tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13760256)))];
1654
  tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14055232)))];
1655
- tensor<fp16, [1, 384, 1, 1500]> obj_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_2209, groups = var_1728, pad = obj_pad_0, pad_type = obj_pad_type_0, strides = var_2207, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("obj_cast_fp16")];
1656
  tensor<fp16, [1, 384, 1, 1500]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
1657
  tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
1658
  tensor<fp16, []> var_2221_to_fp16 = const()[name = tensor<string, []>("op_2221_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -1661,22 +1683,24 @@ program(1.0)
1661
  tensor<fp16, [384]> input_27_beta_0_to_fp16 = const()[name = tensor<string, []>("input_27_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056896)))];
1662
  tensor<fp16, []> input_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1663
  tensor<fp16, [1, 384, 1, 1500]> input_27_cast_fp16 = batch_norm(beta = input_27_beta_0_to_fp16, epsilon = input_27_epsilon_0_to_fp16, gamma = input_27_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_15_cast_fp16)[name = tensor<string, []>("input_27_cast_fp16")];
1664
- tensor<int32, [2]> var_2233 = const()[name = tensor<string, []>("op_2233"), val = tensor<int32, [2]>([1, 1])];
1665
- tensor<int32, [2]> var_2235 = const()[name = tensor<string, []>("op_2235"), val = tensor<int32, [2]>([1, 1])];
1666
- tensor<string, []> input_29_pad_type_0 = const()[name = tensor<string, []>("input_29_pad_type_0"), val = tensor<string, []>("custom")];
1667
  tensor<int32, [4]> input_29_pad_0 = const()[name = tensor<string, []>("input_29_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
1668
  tensor<fp16, [1536, 384, 1, 1]> layers_3_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14057728)))];
1669
  tensor<fp16, [1536]> layers_3_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15237440)))];
1670
- tensor<fp16, [1, 1536, 1, 1500]> input_29_cast_fp16 = conv(bias = layers_3_fc1_bias_to_fp16, dilations = var_2235, groups = var_1728, pad = input_29_pad_0, pad_type = input_29_pad_type_0, strides = var_2233, weight = layers_3_fc1_weight_to_fp16, x = input_27_cast_fp16)[name = tensor<string, []>("input_29_cast_fp16")];
1671
  tensor<string, []> input_mode_0 = const()[name = tensor<string, []>("input_mode_0"), val = tensor<string, []>("EXACT")];
1672
  tensor<fp16, [1, 1536, 1, 1500]> input_cast_fp16 = gelu(mode = input_mode_0, x = input_29_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
1673
- tensor<int32, [2]> var_2241 = const()[name = tensor<string, []>("op_2241"), val = tensor<int32, [2]>([1, 1])];
1674
- tensor<int32, [2]> var_2243 = const()[name = tensor<string, []>("op_2243"), val = tensor<int32, [2]>([1, 1])];
1675
- tensor<string, []> hidden_states_pad_type_0 = const()[name = tensor<string, []>("hidden_states_pad_type_0"), val = tensor<string, []>("custom")];
1676
  tensor<int32, [4]> hidden_states_pad_0 = const()[name = tensor<string, []>("hidden_states_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
 
 
1677
  tensor<fp16, [384, 1536, 1, 1]> layers_3_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15240576)))];
1678
  tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16420288)))];
1679
- tensor<fp16, [1, 384, 1, 1500]> hidden_states_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_2243, groups = var_1728, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_2241, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
1680
  tensor<fp16, [1, 384, 1, 1500]> inputs_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
1681
  tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
1682
  tensor<fp16, []> var_2259_to_fp16 = const()[name = tensor<string, []>("op_2259_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
1
  program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0"}})]
3
  {
4
  func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
 
 
 
5
  tensor<string, []> var_50_pad_type_0 = const()[name = tensor<string, []>("op_50_pad_type_0"), val = tensor<string, []>("custom")];
6
  tensor<int32, [4]> var_50_pad_0 = const()[name = tensor<string, []>("op_50_pad_0"), val = tensor<int32, [4]>([0, 0, 1, 1])];
7
+ tensor<int32, [2]> var_50_strides_0 = const()[name = tensor<string, []>("op_50_strides_0"), val = tensor<int32, [2]>([1, 1])];
8
+ tensor<int32, [2]> var_50_dilations_0 = const()[name = tensor<string, []>("op_50_dilations_0"), val = tensor<int32, [2]>([1, 1])];
9
+ tensor<int32, []> var_50_groups_0 = const()[name = tensor<string, []>("op_50_groups_0"), val = tensor<int32, []>(1)];
10
  tensor<fp16, [384, 80, 1, 3]> var_25_to_fp16 = const()[name = tensor<string, []>("op_25_to_fp16"), val = tensor<fp16, [384, 80, 1, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
11
  tensor<fp16, [384]> var_31_to_fp16 = const()[name = tensor<string, []>("op_31_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(184448)))];
12
+ tensor<fp16, [1, 384, 1, 3000]> var_50_cast_fp16 = conv(bias = var_31_to_fp16, dilations = var_50_dilations_0, groups = var_50_groups_0, pad = var_50_pad_0, pad_type = var_50_pad_type_0, strides = var_50_strides_0, weight = var_25_to_fp16, x = melspectrogram_features)[name = tensor<string, []>("op_50_cast_fp16")];
13
  tensor<string, []> hidden_states_1_mode_0 = const()[name = tensor<string, []>("hidden_states_1_mode_0"), val = tensor<string, []>("EXACT")];
14
  tensor<fp16, [1, 384, 1, 3000]> hidden_states_1_cast_fp16 = gelu(mode = hidden_states_1_mode_0, x = var_50_cast_fp16)[name = tensor<string, []>("hidden_states_1_cast_fp16")];
 
 
 
15
  tensor<string, []> var_90_pad_type_0 = const()[name = tensor<string, []>("op_90_pad_type_0"), val = tensor<string, []>("custom")];
16
  tensor<int32, [4]> var_90_pad_0 = const()[name = tensor<string, []>("op_90_pad_0"), val = tensor<int32, [4]>([0, 0, 1, 1])];
17
+ tensor<int32, [2]> var_90_strides_0 = const()[name = tensor<string, []>("op_90_strides_0"), val = tensor<int32, [2]>([2, 2])];
18
+ tensor<int32, [2]> var_90_dilations_0 = const()[name = tensor<string, []>("op_90_dilations_0"), val = tensor<int32, [2]>([1, 1])];
19
+ tensor<int32, []> var_90_groups_0 = const()[name = tensor<string, []>("op_90_groups_0"), val = tensor<int32, []>(1)];
20
  tensor<fp16, [384, 384, 1, 3]> var_65_to_fp16 = const()[name = tensor<string, []>("op_65_to_fp16"), val = tensor<fp16, [384, 384, 1, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(185280)))];
21
  tensor<fp16, [384]> var_71_to_fp16 = const()[name = tensor<string, []>("op_71_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1070080)))];
22
+ tensor<fp16, [1, 384, 1, 1500]> var_90_cast_fp16 = conv(bias = var_71_to_fp16, dilations = var_90_dilations_0, groups = var_90_groups_0, pad = var_90_pad_0, pad_type = var_90_pad_type_0, strides = var_90_strides_0, weight = var_65_to_fp16, x = hidden_states_1_cast_fp16)[name = tensor<string, []>("op_90_cast_fp16")];
23
  tensor<string, []> hidden_states_3_mode_0 = const()[name = tensor<string, []>("hidden_states_3_mode_0"), val = tensor<string, []>("EXACT")];
24
  tensor<fp16, [1, 384, 1, 1500]> hidden_states_3_cast_fp16 = gelu(mode = hidden_states_3_mode_0, x = var_90_cast_fp16)[name = tensor<string, []>("hidden_states_3_cast_fp16")];
25
  tensor<fp16, [1, 384, 1, 1500]> var_108_to_fp16 = const()[name = tensor<string, []>("op_108_to_fp16"), val = tensor<fp16, [1, 384, 1, 1500]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1070912)))];
 
35
  tensor<fp16, [384]> obj_1_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_1_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2225472)))];
36
  tensor<fp16, []> obj_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
37
  tensor<fp16, [1, 384, 1, 1500]> obj_1_cast_fp16 = batch_norm(beta = obj_1_beta_0_to_fp16, epsilon = obj_1_epsilon_0_to_fp16, gamma = obj_1_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_1_cast_fp16)[name = tensor<string, []>("obj_1_cast_fp16")];
38
+ tensor<string, []> query_1_pad_type_0 = const()[name = tensor<string, []>("query_1_pad_type_0"), val = tensor<string, []>("valid")];
39
+ tensor<int32, [2]> query_1_strides_0 = const()[name = tensor<string, []>("query_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
40
  tensor<int32, [4]> query_1_pad_0 = const()[name = tensor<string, []>("query_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
41
+ tensor<int32, [2]> query_1_dilations_0 = const()[name = tensor<string, []>("query_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
42
+ tensor<int32, []> query_1_groups_0 = const()[name = tensor<string, []>("query_1_groups_0"), val = tensor<int32, []>(1)];
43
  tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2226304)))];
44
  tensor<fp16, [384]> layers_0_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2521280)))];
45
+ tensor<fp16, [1, 384, 1, 1500]> query_1_cast_fp16 = conv(bias = layers_0_self_attn_q_proj_bias_to_fp16, dilations = query_1_dilations_0, groups = query_1_groups_0, pad = query_1_pad_0, pad_type = query_1_pad_type_0, strides = query_1_strides_0, weight = layers_0_self_attn_q_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("query_1_cast_fp16")];
46
+ tensor<string, []> key_1_pad_type_0 = const()[name = tensor<string, []>("key_1_pad_type_0"), val = tensor<string, []>("valid")];
47
+ tensor<int32, [2]> key_1_strides_0 = const()[name = tensor<string, []>("key_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
48
  tensor<int32, [4]> key_1_pad_0 = const()[name = tensor<string, []>("key_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
49
+ tensor<int32, [2]> key_1_dilations_0 = const()[name = tensor<string, []>("key_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
50
+ tensor<int32, []> key_1_groups_0 = const()[name = tensor<string, []>("key_1_groups_0"), val = tensor<int32, []>(1)];
51
  tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2522112)))];
52
+ tensor<fp16, [1, 384, 1, 1500]> key_1_cast_fp16 = conv(dilations = key_1_dilations_0, groups = key_1_groups_0, pad = key_1_pad_0, pad_type = key_1_pad_type_0, strides = key_1_strides_0, weight = layers_0_self_attn_k_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("key_1_cast_fp16")];
53
+ tensor<string, []> value_1_pad_type_0 = const()[name = tensor<string, []>("value_1_pad_type_0"), val = tensor<string, []>("valid")];
54
+ tensor<int32, [2]> value_1_strides_0 = const()[name = tensor<string, []>("value_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
55
  tensor<int32, [4]> value_1_pad_0 = const()[name = tensor<string, []>("value_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
56
+ tensor<int32, [2]> value_1_dilations_0 = const()[name = tensor<string, []>("value_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
57
+ tensor<int32, []> value_1_groups_0 = const()[name = tensor<string, []>("value_1_groups_0"), val = tensor<int32, []>(1)];
58
  tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2817088)))];
59
  tensor<fp16, [384]> layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3112064)))];
60
+ tensor<fp16, [1, 384, 1, 1500]> value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = value_1_dilations_0, groups = value_1_groups_0, pad = value_1_pad_0, pad_type = value_1_pad_type_0, strides = value_1_strides_0, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("value_1_cast_fp16")];
61
  tensor<int32, [4]> var_184_begin_0 = const()[name = tensor<string, []>("op_184_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
62
  tensor<int32, [4]> var_184_end_0 = const()[name = tensor<string, []>("op_184_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
63
  tensor<bool, [4]> var_184_end_mask_0 = const()[name = tensor<string, []>("op_184_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
 
410
  tensor<fp16, [1, 64, 1, 1500]> var_603_cast_fp16 = concat(axis = var_118, interleave = var_603_interleave_0, values = (var_585_cast_fp16, var_587_cast_fp16, var_589_cast_fp16, var_591_cast_fp16))[name = tensor<string, []>("op_603_cast_fp16")];
411
  tensor<bool, []> input_1_interleave_0 = const()[name = tensor<string, []>("input_1_interleave_0"), val = tensor<bool, []>(false)];
412
  tensor<fp16, [1, 384, 1, 1500]> input_1_cast_fp16 = concat(axis = var_129, interleave = input_1_interleave_0, values = (var_593_cast_fp16, var_595_cast_fp16, var_597_cast_fp16, var_599_cast_fp16, var_601_cast_fp16, var_603_cast_fp16))[name = tensor<string, []>("input_1_cast_fp16")];
413
+ tensor<string, []> obj_3_pad_type_0 = const()[name = tensor<string, []>("obj_3_pad_type_0"), val = tensor<string, []>("valid")];
414
+ tensor<int32, [2]> obj_3_strides_0 = const()[name = tensor<string, []>("obj_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
415
  tensor<int32, [4]> obj_3_pad_0 = const()[name = tensor<string, []>("obj_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
416
+ tensor<int32, [2]> obj_3_dilations_0 = const()[name = tensor<string, []>("obj_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
417
+ tensor<int32, []> obj_3_groups_0 = const()[name = tensor<string, []>("obj_3_groups_0"), val = tensor<int32, []>(1)];
418
  tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3112896)))];
419
  tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3407872)))];
420
+ tensor<fp16, [1, 384, 1, 1500]> obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = obj_3_dilations_0, groups = obj_3_groups_0, pad = obj_3_pad_0, pad_type = obj_3_pad_type_0, strides = obj_3_strides_0, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_3_cast_fp16")];
421
  tensor<fp16, [1, 384, 1, 1500]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
422
  tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
423
  tensor<fp16, []> var_622_to_fp16 = const()[name = tensor<string, []>("op_622_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
426
  tensor<fp16, [384]> input_3_beta_0_to_fp16 = const()[name = tensor<string, []>("input_3_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3409536)))];
427
  tensor<fp16, []> input_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
428
  tensor<fp16, [1, 384, 1, 1500]> input_3_cast_fp16 = batch_norm(beta = input_3_beta_0_to_fp16, epsilon = input_3_epsilon_0_to_fp16, gamma = input_3_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_3_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
429
+ tensor<string, []> input_5_pad_type_0 = const()[name = tensor<string, []>("input_5_pad_type_0"), val = tensor<string, []>("valid")];
430
+ tensor<int32, [2]> input_5_strides_0 = const()[name = tensor<string, []>("input_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
431
  tensor<int32, [4]> input_5_pad_0 = const()[name = tensor<string, []>("input_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
432
+ tensor<int32, [2]> input_5_dilations_0 = const()[name = tensor<string, []>("input_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
433
+ tensor<int32, []> input_5_groups_0 = const()[name = tensor<string, []>("input_5_groups_0"), val = tensor<int32, []>(1)];
434
  tensor<fp16, [1536, 384, 1, 1]> layers_0_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3410368)))];
435
  tensor<fp16, [1536]> layers_0_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4590080)))];
436
+ tensor<fp16, [1, 1536, 1, 1500]> input_5_cast_fp16 = conv(bias = layers_0_fc1_bias_to_fp16, dilations = input_5_dilations_0, groups = input_5_groups_0, pad = input_5_pad_0, pad_type = input_5_pad_type_0, strides = input_5_strides_0, weight = layers_0_fc1_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
437
  tensor<string, []> input_7_mode_0 = const()[name = tensor<string, []>("input_7_mode_0"), val = tensor<string, []>("EXACT")];
438
  tensor<fp16, [1, 1536, 1, 1500]> input_7_cast_fp16 = gelu(mode = input_7_mode_0, x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
439
+ tensor<string, []> hidden_states_5_pad_type_0 = const()[name = tensor<string, []>("hidden_states_5_pad_type_0"), val = tensor<string, []>("valid")];
440
+ tensor<int32, [2]> hidden_states_5_strides_0 = const()[name = tensor<string, []>("hidden_states_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
441
  tensor<int32, [4]> hidden_states_5_pad_0 = const()[name = tensor<string, []>("hidden_states_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
442
+ tensor<int32, [2]> hidden_states_5_dilations_0 = const()[name = tensor<string, []>("hidden_states_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
443
+ tensor<int32, []> hidden_states_5_groups_0 = const()[name = tensor<string, []>("hidden_states_5_groups_0"), val = tensor<int32, []>(1)];
444
  tensor<fp16, [384, 1536, 1, 1]> layers_0_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4593216)))];
445
  tensor<fp16, [384]> layers_0_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5772928)))];
446
+ tensor<fp16, [1, 384, 1, 1500]> hidden_states_5_cast_fp16 = conv(bias = layers_0_fc2_bias_to_fp16, dilations = hidden_states_5_dilations_0, groups = hidden_states_5_groups_0, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = hidden_states_5_strides_0, weight = layers_0_fc2_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("hidden_states_5_cast_fp16")];
447
  tensor<fp16, [1, 384, 1, 1500]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
448
  tensor<int32, []> var_651 = const()[name = tensor<string, []>("op_651"), val = tensor<int32, []>(3)];
449
  tensor<int32, []> var_662 = const()[name = tensor<string, []>("op_662"), val = tensor<int32, []>(1)];
 
454
  tensor<fp16, [384]> obj_5_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5774592)))];
455
  tensor<fp16, []> obj_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
456
  tensor<fp16, [1, 384, 1, 1500]> obj_5_cast_fp16 = batch_norm(beta = obj_5_beta_0_to_fp16, epsilon = obj_5_epsilon_0_to_fp16, gamma = obj_5_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_5_cast_fp16)[name = tensor<string, []>("obj_5_cast_fp16")];
457
+ tensor<string, []> query_3_pad_type_0 = const()[name = tensor<string, []>("query_3_pad_type_0"), val = tensor<string, []>("valid")];
458
+ tensor<int32, [2]> query_3_strides_0 = const()[name = tensor<string, []>("query_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
459
  tensor<int32, [4]> query_3_pad_0 = const()[name = tensor<string, []>("query_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
460
+ tensor<int32, [2]> query_3_dilations_0 = const()[name = tensor<string, []>("query_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
461
+ tensor<int32, []> query_3_groups_0 = const()[name = tensor<string, []>("query_3_groups_0"), val = tensor<int32, []>(1)];
462
  tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5775424)))];
463
  tensor<fp16, [384]> layers_1_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6070400)))];
464
+ tensor<fp16, [1, 384, 1, 1500]> query_3_cast_fp16 = conv(bias = layers_1_self_attn_q_proj_bias_to_fp16, dilations = query_3_dilations_0, groups = query_3_groups_0, pad = query_3_pad_0, pad_type = query_3_pad_type_0, strides = query_3_strides_0, weight = layers_1_self_attn_q_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor<string, []>("query_3_cast_fp16")];
465
+ tensor<string, []> key_3_pad_type_0 = const()[name = tensor<string, []>("key_3_pad_type_0"), val = tensor<string, []>("valid")];
466
+ tensor<int32, [2]> key_3_strides_0 = const()[name = tensor<string, []>("key_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
467
  tensor<int32, [4]> key_3_pad_0 = const()[name = tensor<string, []>("key_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
468
+ tensor<int32, [2]> key_3_dilations_0 = const()[name = tensor<string, []>("key_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
469
+ tensor<int32, []> key_3_groups_0 = const()[name = tensor<string, []>("key_3_groups_0"), val = tensor<int32, []>(1)];
470
  tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6071232)))];
471
+ tensor<fp16, [1, 384, 1, 1500]> key_3_cast_fp16 = conv(dilations = key_3_dilations_0, groups = key_3_groups_0, pad = key_3_pad_0, pad_type = key_3_pad_type_0, strides = key_3_strides_0, weight = layers_1_self_attn_k_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor<string, []>("key_3_cast_fp16")];
472
+ tensor<string, []> value_3_pad_type_0 = const()[name = tensor<string, []>("value_3_pad_type_0"), val = tensor<string, []>("valid")];
473
+ tensor<int32, [2]> value_3_strides_0 = const()[name = tensor<string, []>("value_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
474
  tensor<int32, [4]> value_3_pad_0 = const()[name = tensor<string, []>("value_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
475
+ tensor<int32, [2]> value_3_dilations_0 = const()[name = tensor<string, []>("value_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
476
+ tensor<int32, []> value_3_groups_0 = const()[name = tensor<string, []>("value_3_groups_0"), val = tensor<int32, []>(1)];
477
  tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6366208)))];
478
  tensor<fp16, [384]> layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6661184)))];
479
+ tensor<fp16, [1, 384, 1, 1500]> value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = value_3_dilations_0, groups = value_3_groups_0, pad = value_3_pad_0, pad_type = value_3_pad_type_0, strides = value_3_strides_0, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor<string, []>("value_3_cast_fp16")];
480
  tensor<int32, [4]> var_717_begin_0 = const()[name = tensor<string, []>("op_717_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
481
  tensor<int32, [4]> var_717_end_0 = const()[name = tensor<string, []>("op_717_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
482
  tensor<bool, [4]> var_717_end_mask_0 = const()[name = tensor<string, []>("op_717_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
 
829
  tensor<fp16, [1, 64, 1, 1500]> var_1136_cast_fp16 = concat(axis = var_651, interleave = var_1136_interleave_0, values = (var_1118_cast_fp16, var_1120_cast_fp16, var_1122_cast_fp16, var_1124_cast_fp16))[name = tensor<string, []>("op_1136_cast_fp16")];
830
  tensor<bool, []> input_9_interleave_0 = const()[name = tensor<string, []>("input_9_interleave_0"), val = tensor<bool, []>(false)];
831
  tensor<fp16, [1, 384, 1, 1500]> input_9_cast_fp16 = concat(axis = var_662, interleave = input_9_interleave_0, values = (var_1126_cast_fp16, var_1128_cast_fp16, var_1130_cast_fp16, var_1132_cast_fp16, var_1134_cast_fp16, var_1136_cast_fp16))[name = tensor<string, []>("input_9_cast_fp16")];
832
+ tensor<string, []> obj_7_pad_type_0 = const()[name = tensor<string, []>("obj_7_pad_type_0"), val = tensor<string, []>("valid")];
833
+ tensor<int32, [2]> obj_7_strides_0 = const()[name = tensor<string, []>("obj_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
834
  tensor<int32, [4]> obj_7_pad_0 = const()[name = tensor<string, []>("obj_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
835
+ tensor<int32, [2]> obj_7_dilations_0 = const()[name = tensor<string, []>("obj_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
836
+ tensor<int32, []> obj_7_groups_0 = const()[name = tensor<string, []>("obj_7_groups_0"), val = tensor<int32, []>(1)];
837
  tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6662016)))];
838
  tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6956992)))];
839
+ tensor<fp16, [1, 384, 1, 1500]> obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = obj_7_dilations_0, groups = obj_7_groups_0, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = obj_7_strides_0, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
840
  tensor<fp16, [1, 384, 1, 1500]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
841
  tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
842
  tensor<fp16, []> var_1155_to_fp16 = const()[name = tensor<string, []>("op_1155_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
845
  tensor<fp16, [384]> input_11_beta_0_to_fp16 = const()[name = tensor<string, []>("input_11_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6958656)))];
846
  tensor<fp16, []> input_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
847
  tensor<fp16, [1, 384, 1, 1500]> input_11_cast_fp16 = batch_norm(beta = input_11_beta_0_to_fp16, epsilon = input_11_epsilon_0_to_fp16, gamma = input_11_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_7_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
848
+ tensor<string, []> input_13_pad_type_0 = const()[name = tensor<string, []>("input_13_pad_type_0"), val = tensor<string, []>("valid")];
849
+ tensor<int32, [2]> input_13_strides_0 = const()[name = tensor<string, []>("input_13_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
850
  tensor<int32, [4]> input_13_pad_0 = const()[name = tensor<string, []>("input_13_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
851
+ tensor<int32, [2]> input_13_dilations_0 = const()[name = tensor<string, []>("input_13_dilations_0"), val = tensor<int32, [2]>([1, 1])];
852
+ tensor<int32, []> input_13_groups_0 = const()[name = tensor<string, []>("input_13_groups_0"), val = tensor<int32, []>(1)];
853
  tensor<fp16, [1536, 384, 1, 1]> layers_1_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6959488)))];
854
  tensor<fp16, [1536]> layers_1_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8139200)))];
855
+ tensor<fp16, [1, 1536, 1, 1500]> input_13_cast_fp16 = conv(bias = layers_1_fc1_bias_to_fp16, dilations = input_13_dilations_0, groups = input_13_groups_0, pad = input_13_pad_0, pad_type = input_13_pad_type_0, strides = input_13_strides_0, weight = layers_1_fc1_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("input_13_cast_fp16")];
856
  tensor<string, []> input_15_mode_0 = const()[name = tensor<string, []>("input_15_mode_0"), val = tensor<string, []>("EXACT")];
857
  tensor<fp16, [1, 1536, 1, 1500]> input_15_cast_fp16 = gelu(mode = input_15_mode_0, x = input_13_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
858
+ tensor<string, []> hidden_states_7_pad_type_0 = const()[name = tensor<string, []>("hidden_states_7_pad_type_0"), val = tensor<string, []>("valid")];
859
+ tensor<int32, [2]> hidden_states_7_strides_0 = const()[name = tensor<string, []>("hidden_states_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
860
  tensor<int32, [4]> hidden_states_7_pad_0 = const()[name = tensor<string, []>("hidden_states_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
861
+ tensor<int32, [2]> hidden_states_7_dilations_0 = const()[name = tensor<string, []>("hidden_states_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
862
+ tensor<int32, []> hidden_states_7_groups_0 = const()[name = tensor<string, []>("hidden_states_7_groups_0"), val = tensor<int32, []>(1)];
863
  tensor<fp16, [384, 1536, 1, 1]> layers_1_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8142336)))];
864
  tensor<fp16, [384]> layers_1_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9322048)))];
865
+ tensor<fp16, [1, 384, 1, 1500]> hidden_states_7_cast_fp16 = conv(bias = layers_1_fc2_bias_to_fp16, dilations = hidden_states_7_dilations_0, groups = hidden_states_7_groups_0, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = hidden_states_7_strides_0, weight = layers_1_fc2_weight_to_fp16, x = input_15_cast_fp16)[name = tensor<string, []>("hidden_states_7_cast_fp16")];
866
  tensor<fp16, [1, 384, 1, 1500]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
867
  tensor<int32, []> var_1184 = const()[name = tensor<string, []>("op_1184"), val = tensor<int32, []>(3)];
868
  tensor<int32, []> var_1195 = const()[name = tensor<string, []>("op_1195"), val = tensor<int32, []>(1)];
 
873
  tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9323712)))];
874
  tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
875
  tensor<fp16, [1, 384, 1, 1500]> obj_9_cast_fp16 = batch_norm(beta = obj_9_beta_0_to_fp16, epsilon = obj_9_epsilon_0_to_fp16, gamma = obj_9_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_9_cast_fp16)[name = tensor<string, []>("obj_9_cast_fp16")];
876
+ tensor<string, []> query_5_pad_type_0 = const()[name = tensor<string, []>("query_5_pad_type_0"), val = tensor<string, []>("valid")];
877
+ tensor<int32, [2]> query_5_strides_0 = const()[name = tensor<string, []>("query_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
878
  tensor<int32, [4]> query_5_pad_0 = const()[name = tensor<string, []>("query_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
879
+ tensor<int32, [2]> query_5_dilations_0 = const()[name = tensor<string, []>("query_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
880
+ tensor<int32, []> query_5_groups_0 = const()[name = tensor<string, []>("query_5_groups_0"), val = tensor<int32, []>(1)];
881
  tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9324544)))];
882
  tensor<fp16, [384]> layers_2_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9619520)))];
883
+ tensor<fp16, [1, 384, 1, 1500]> query_5_cast_fp16 = conv(bias = layers_2_self_attn_q_proj_bias_to_fp16, dilations = query_5_dilations_0, groups = query_5_groups_0, pad = query_5_pad_0, pad_type = query_5_pad_type_0, strides = query_5_strides_0, weight = layers_2_self_attn_q_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor<string, []>("query_5_cast_fp16")];
884
+ tensor<string, []> key_5_pad_type_0 = const()[name = tensor<string, []>("key_5_pad_type_0"), val = tensor<string, []>("valid")];
885
+ tensor<int32, [2]> key_5_strides_0 = const()[name = tensor<string, []>("key_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
886
  tensor<int32, [4]> key_5_pad_0 = const()[name = tensor<string, []>("key_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
887
+ tensor<int32, [2]> key_5_dilations_0 = const()[name = tensor<string, []>("key_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
888
+ tensor<int32, []> key_5_groups_0 = const()[name = tensor<string, []>("key_5_groups_0"), val = tensor<int32, []>(1)];
889
  tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9620352)))];
890
+ tensor<fp16, [1, 384, 1, 1500]> key_5_cast_fp16 = conv(dilations = key_5_dilations_0, groups = key_5_groups_0, pad = key_5_pad_0, pad_type = key_5_pad_type_0, strides = key_5_strides_0, weight = layers_2_self_attn_k_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor<string, []>("key_5_cast_fp16")];
891
+ tensor<string, []> value_5_pad_type_0 = const()[name = tensor<string, []>("value_5_pad_type_0"), val = tensor<string, []>("valid")];
892
+ tensor<int32, [2]> value_5_strides_0 = const()[name = tensor<string, []>("value_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
893
  tensor<int32, [4]> value_5_pad_0 = const()[name = tensor<string, []>("value_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
894
+ tensor<int32, [2]> value_5_dilations_0 = const()[name = tensor<string, []>("value_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
895
+ tensor<int32, []> value_5_groups_0 = const()[name = tensor<string, []>("value_5_groups_0"), val = tensor<int32, []>(1)];
896
  tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9915328)))];
897
  tensor<fp16, [384]> layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10210304)))];
898
+ tensor<fp16, [1, 384, 1, 1500]> value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = value_5_dilations_0, groups = value_5_groups_0, pad = value_5_pad_0, pad_type = value_5_pad_type_0, strides = value_5_strides_0, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor<string, []>("value_5_cast_fp16")];
899
  tensor<int32, [4]> var_1250_begin_0 = const()[name = tensor<string, []>("op_1250_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
900
  tensor<int32, [4]> var_1250_end_0 = const()[name = tensor<string, []>("op_1250_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
901
  tensor<bool, [4]> var_1250_end_mask_0 = const()[name = tensor<string, []>("op_1250_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
 
1248
  tensor<fp16, [1, 64, 1, 1500]> var_1669_cast_fp16 = concat(axis = var_1184, interleave = var_1669_interleave_0, values = (var_1651_cast_fp16, var_1653_cast_fp16, var_1655_cast_fp16, var_1657_cast_fp16))[name = tensor<string, []>("op_1669_cast_fp16")];
1249
  tensor<bool, []> input_17_interleave_0 = const()[name = tensor<string, []>("input_17_interleave_0"), val = tensor<bool, []>(false)];
1250
  tensor<fp16, [1, 384, 1, 1500]> input_17_cast_fp16 = concat(axis = var_1195, interleave = input_17_interleave_0, values = (var_1659_cast_fp16, var_1661_cast_fp16, var_1663_cast_fp16, var_1665_cast_fp16, var_1667_cast_fp16, var_1669_cast_fp16))[name = tensor<string, []>("input_17_cast_fp16")];
1251
+ tensor<string, []> obj_11_pad_type_0 = const()[name = tensor<string, []>("obj_11_pad_type_0"), val = tensor<string, []>("valid")];
1252
+ tensor<int32, [2]> obj_11_strides_0 = const()[name = tensor<string, []>("obj_11_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
1253
  tensor<int32, [4]> obj_11_pad_0 = const()[name = tensor<string, []>("obj_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1254
+ tensor<int32, [2]> obj_11_dilations_0 = const()[name = tensor<string, []>("obj_11_dilations_0"), val = tensor<int32, [2]>([1, 1])];
1255
+ tensor<int32, []> obj_11_groups_0 = const()[name = tensor<string, []>("obj_11_groups_0"), val = tensor<int32, []>(1)];
1256
  tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10211136)))];
1257
  tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506112)))];
1258
+ tensor<fp16, [1, 384, 1, 1500]> obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = obj_11_dilations_0, groups = obj_11_groups_0, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = obj_11_strides_0, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_17_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
1259
  tensor<fp16, [1, 384, 1, 1500]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
1260
  tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
1261
  tensor<fp16, []> var_1688_to_fp16 = const()[name = tensor<string, []>("op_1688_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
1264
  tensor<fp16, [384]> input_19_beta_0_to_fp16 = const()[name = tensor<string, []>("input_19_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10507776)))];
1265
  tensor<fp16, []> input_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1266
  tensor<fp16, [1, 384, 1, 1500]> input_19_cast_fp16 = batch_norm(beta = input_19_beta_0_to_fp16, epsilon = input_19_epsilon_0_to_fp16, gamma = input_19_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_11_cast_fp16)[name = tensor<string, []>("input_19_cast_fp16")];
1267
+ tensor<string, []> input_21_pad_type_0 = const()[name = tensor<string, []>("input_21_pad_type_0"), val = tensor<string, []>("valid")];
1268
+ tensor<int32, [2]> input_21_strides_0 = const()[name = tensor<string, []>("input_21_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
1269
  tensor<int32, [4]> input_21_pad_0 = const()[name = tensor<string, []>("input_21_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1270
+ tensor<int32, [2]> input_21_dilations_0 = const()[name = tensor<string, []>("input_21_dilations_0"), val = tensor<int32, [2]>([1, 1])];
1271
+ tensor<int32, []> input_21_groups_0 = const()[name = tensor<string, []>("input_21_groups_0"), val = tensor<int32, []>(1)];
1272
  tensor<fp16, [1536, 384, 1, 1]> layers_2_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10508608)))];
1273
  tensor<fp16, [1536]> layers_2_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11688320)))];
1274
+ tensor<fp16, [1, 1536, 1, 1500]> input_21_cast_fp16 = conv(bias = layers_2_fc1_bias_to_fp16, dilations = input_21_dilations_0, groups = input_21_groups_0, pad = input_21_pad_0, pad_type = input_21_pad_type_0, strides = input_21_strides_0, weight = layers_2_fc1_weight_to_fp16, x = input_19_cast_fp16)[name = tensor<string, []>("input_21_cast_fp16")];
1275
  tensor<string, []> input_23_mode_0 = const()[name = tensor<string, []>("input_23_mode_0"), val = tensor<string, []>("EXACT")];
1276
  tensor<fp16, [1, 1536, 1, 1500]> input_23_cast_fp16 = gelu(mode = input_23_mode_0, x = input_21_cast_fp16)[name = tensor<string, []>("input_23_cast_fp16")];
1277
+ tensor<string, []> hidden_states_9_pad_type_0 = const()[name = tensor<string, []>("hidden_states_9_pad_type_0"), val = tensor<string, []>("valid")];
1278
+ tensor<int32, [2]> hidden_states_9_strides_0 = const()[name = tensor<string, []>("hidden_states_9_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
1279
  tensor<int32, [4]> hidden_states_9_pad_0 = const()[name = tensor<string, []>("hidden_states_9_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1280
+ tensor<int32, [2]> hidden_states_9_dilations_0 = const()[name = tensor<string, []>("hidden_states_9_dilations_0"), val = tensor<int32, [2]>([1, 1])];
1281
+ tensor<int32, []> hidden_states_9_groups_0 = const()[name = tensor<string, []>("hidden_states_9_groups_0"), val = tensor<int32, []>(1)];
1282
  tensor<fp16, [384, 1536, 1, 1]> layers_2_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11691456)))];
1283
  tensor<fp16, [384]> layers_2_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12871168)))];
1284
+ tensor<fp16, [1, 384, 1, 1500]> hidden_states_9_cast_fp16 = conv(bias = layers_2_fc2_bias_to_fp16, dilations = hidden_states_9_dilations_0, groups = hidden_states_9_groups_0, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = hidden_states_9_strides_0, weight = layers_2_fc2_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("hidden_states_9_cast_fp16")];
1285
  tensor<fp16, [1, 384, 1, 1500]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
1286
  tensor<int32, []> var_1717 = const()[name = tensor<string, []>("op_1717"), val = tensor<int32, []>(3)];
1287
  tensor<int32, []> var_1728 = const()[name = tensor<string, []>("op_1728"), val = tensor<int32, []>(1)];
 
1292
  tensor<fp16, [384]> obj_13_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_13_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872832)))];
1293
  tensor<fp16, []> obj_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1294
  tensor<fp16, [1, 384, 1, 1500]> obj_13_cast_fp16 = batch_norm(beta = obj_13_beta_0_to_fp16, epsilon = obj_13_epsilon_0_to_fp16, gamma = obj_13_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_13_cast_fp16)[name = tensor<string, []>("obj_13_cast_fp16")];
1295
+ tensor<string, []> query_pad_type_0 = const()[name = tensor<string, []>("query_pad_type_0"), val = tensor<string, []>("valid")];
1296
+ tensor<int32, [2]> query_strides_0 = const()[name = tensor<string, []>("query_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
1297
  tensor<int32, [4]> query_pad_0 = const()[name = tensor<string, []>("query_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1298
+ tensor<int32, [2]> query_dilations_0 = const()[name = tensor<string, []>("query_dilations_0"), val = tensor<int32, [2]>([1, 1])];
1299
+ tensor<int32, []> query_groups_0 = const()[name = tensor<string, []>("query_groups_0"), val = tensor<int32, []>(1)];
1300
  tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12873664)))];
1301
  tensor<fp16, [384]> layers_3_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13168640)))];
1302
+ tensor<fp16, [1, 384, 1, 1500]> query_cast_fp16 = conv(bias = layers_3_self_attn_q_proj_bias_to_fp16, dilations = query_dilations_0, groups = query_groups_0, pad = query_pad_0, pad_type = query_pad_type_0, strides = query_strides_0, weight = layers_3_self_attn_q_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("query_cast_fp16")];
1303
+ tensor<string, []> key_pad_type_0 = const()[name = tensor<string, []>("key_pad_type_0"), val = tensor<string, []>("valid")];
1304
+ tensor<int32, [2]> key_strides_0 = const()[name = tensor<string, []>("key_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
1305
  tensor<int32, [4]> key_pad_0 = const()[name = tensor<string, []>("key_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1306
+ tensor<int32, [2]> key_dilations_0 = const()[name = tensor<string, []>("key_dilations_0"), val = tensor<int32, [2]>([1, 1])];
1307
+ tensor<int32, []> key_groups_0 = const()[name = tensor<string, []>("key_groups_0"), val = tensor<int32, []>(1)];
1308
  tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13169472)))];
1309
+ tensor<fp16, [1, 384, 1, 1500]> key_cast_fp16 = conv(dilations = key_dilations_0, groups = key_groups_0, pad = key_pad_0, pad_type = key_pad_type_0, strides = key_strides_0, weight = layers_3_self_attn_k_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("key_cast_fp16")];
1310
+ tensor<string, []> value_pad_type_0 = const()[name = tensor<string, []>("value_pad_type_0"), val = tensor<string, []>("valid")];
1311
+ tensor<int32, [2]> value_strides_0 = const()[name = tensor<string, []>("value_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
1312
  tensor<int32, [4]> value_pad_0 = const()[name = tensor<string, []>("value_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1313
+ tensor<int32, [2]> value_dilations_0 = const()[name = tensor<string, []>("value_dilations_0"), val = tensor<int32, [2]>([1, 1])];
1314
+ tensor<int32, []> value_groups_0 = const()[name = tensor<string, []>("value_groups_0"), val = tensor<int32, []>(1)];
1315
  tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13464448)))];
1316
  tensor<fp16, [384]> layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13759424)))];
1317
+ tensor<fp16, [1, 384, 1, 1500]> value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = value_dilations_0, groups = value_groups_0, pad = value_pad_0, pad_type = value_pad_type_0, strides = value_strides_0, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("value_cast_fp16")];
1318
  tensor<int32, [4]> var_1783_begin_0 = const()[name = tensor<string, []>("op_1783_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1319
  tensor<int32, [4]> var_1783_end_0 = const()[name = tensor<string, []>("op_1783_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
1320
  tensor<bool, [4]> var_1783_end_mask_0 = const()[name = tensor<string, []>("op_1783_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
 
1667
  tensor<fp16, [1, 64, 1, 1500]> var_2202_cast_fp16 = concat(axis = var_1717, interleave = var_2202_interleave_0, values = (var_2184_cast_fp16, var_2186_cast_fp16, var_2188_cast_fp16, var_2190_cast_fp16))[name = tensor<string, []>("op_2202_cast_fp16")];
1668
  tensor<bool, []> input_25_interleave_0 = const()[name = tensor<string, []>("input_25_interleave_0"), val = tensor<bool, []>(false)];
1669
  tensor<fp16, [1, 384, 1, 1500]> input_25_cast_fp16 = concat(axis = var_1728, interleave = input_25_interleave_0, values = (var_2192_cast_fp16, var_2194_cast_fp16, var_2196_cast_fp16, var_2198_cast_fp16, var_2200_cast_fp16, var_2202_cast_fp16))[name = tensor<string, []>("input_25_cast_fp16")];
1670
+ tensor<string, []> obj_pad_type_0 = const()[name = tensor<string, []>("obj_pad_type_0"), val = tensor<string, []>("valid")];
1671
+ tensor<int32, [2]> obj_strides_0 = const()[name = tensor<string, []>("obj_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
1672
  tensor<int32, [4]> obj_pad_0 = const()[name = tensor<string, []>("obj_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1673
+ tensor<int32, [2]> obj_dilations_0 = const()[name = tensor<string, []>("obj_dilations_0"), val = tensor<int32, [2]>([1, 1])];
1674
+ tensor<int32, []> obj_groups_0 = const()[name = tensor<string, []>("obj_groups_0"), val = tensor<int32, []>(1)];
1675
  tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13760256)))];
1676
  tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14055232)))];
1677
+ tensor<fp16, [1, 384, 1, 1500]> obj_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = obj_dilations_0, groups = obj_groups_0, pad = obj_pad_0, pad_type = obj_pad_type_0, strides = obj_strides_0, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("obj_cast_fp16")];
1678
  tensor<fp16, [1, 384, 1, 1500]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
1679
  tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
1680
  tensor<fp16, []> var_2221_to_fp16 = const()[name = tensor<string, []>("op_2221_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
1683
  tensor<fp16, [384]> input_27_beta_0_to_fp16 = const()[name = tensor<string, []>("input_27_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056896)))];
1684
  tensor<fp16, []> input_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1685
  tensor<fp16, [1, 384, 1, 1500]> input_27_cast_fp16 = batch_norm(beta = input_27_beta_0_to_fp16, epsilon = input_27_epsilon_0_to_fp16, gamma = input_27_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_15_cast_fp16)[name = tensor<string, []>("input_27_cast_fp16")];
1686
+ tensor<string, []> input_29_pad_type_0 = const()[name = tensor<string, []>("input_29_pad_type_0"), val = tensor<string, []>("valid")];
1687
+ tensor<int32, [2]> input_29_strides_0 = const()[name = tensor<string, []>("input_29_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
1688
  tensor<int32, [4]> input_29_pad_0 = const()[name = tensor<string, []>("input_29_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1689
+ tensor<int32, [2]> input_29_dilations_0 = const()[name = tensor<string, []>("input_29_dilations_0"), val = tensor<int32, [2]>([1, 1])];
1690
+ tensor<int32, []> input_29_groups_0 = const()[name = tensor<string, []>("input_29_groups_0"), val = tensor<int32, []>(1)];
1691
  tensor<fp16, [1536, 384, 1, 1]> layers_3_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14057728)))];
1692
  tensor<fp16, [1536]> layers_3_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15237440)))];
1693
+ tensor<fp16, [1, 1536, 1, 1500]> input_29_cast_fp16 = conv(bias = layers_3_fc1_bias_to_fp16, dilations = input_29_dilations_0, groups = input_29_groups_0, pad = input_29_pad_0, pad_type = input_29_pad_type_0, strides = input_29_strides_0, weight = layers_3_fc1_weight_to_fp16, x = input_27_cast_fp16)[name = tensor<string, []>("input_29_cast_fp16")];
1694
  tensor<string, []> input_mode_0 = const()[name = tensor<string, []>("input_mode_0"), val = tensor<string, []>("EXACT")];
1695
  tensor<fp16, [1, 1536, 1, 1500]> input_cast_fp16 = gelu(mode = input_mode_0, x = input_29_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
1696
+ tensor<string, []> hidden_states_pad_type_0 = const()[name = tensor<string, []>("hidden_states_pad_type_0"), val = tensor<string, []>("valid")];
1697
+ tensor<int32, [2]> hidden_states_strides_0 = const()[name = tensor<string, []>("hidden_states_strides_0"), val = tensor<int32, [2]>([1, 1])];
 
1698
  tensor<int32, [4]> hidden_states_pad_0 = const()[name = tensor<string, []>("hidden_states_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
1699
+ tensor<int32, [2]> hidden_states_dilations_0 = const()[name = tensor<string, []>("hidden_states_dilations_0"), val = tensor<int32, [2]>([1, 1])];
1700
+ tensor<int32, []> hidden_states_groups_0 = const()[name = tensor<string, []>("hidden_states_groups_0"), val = tensor<int32, []>(1)];
1701
  tensor<fp16, [384, 1536, 1, 1]> layers_3_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15240576)))];
1702
  tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16420288)))];
1703
+ tensor<fp16, [1, 384, 1, 1500]> hidden_states_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = hidden_states_dilations_0, groups = hidden_states_groups_0, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = hidden_states_strides_0, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
1704
  tensor<fp16, [1, 384, 1, 1500]> inputs_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
1705
  tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
1706
  tensor<fp16, []> var_2259_to_fp16 = const()[name = tensor<string, []>("op_2259_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/analytics/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d82cc7d4074858e35be55a3473aed19516a5dae4ebe63c3c0f7bc9bb4473c748
3
  size 243
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:160d9737169d22dc01a899e1c6a0a9c44d0637d41f0dedb2a0b7c1422c4035d2
3
  size 243
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:72c877b0bfab9691cdcd313b3c849cec6e870c6e9537096e5dec6836a1220b75
3
- size 330
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb3b3f51b080f58b12a6888a5e8ad57419be9e4c6843b96a7577f171b300e660
3
+ size 328
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/metadata.json CHANGED
@@ -50,8 +50,8 @@
50
  },
51
  "userDefinedMetadata" : {
52
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
53
- "com.github.apple.coremltools.version" : "8.0b2",
54
- "com.github.apple.coremltools.source" : "torch==2.4.1"
55
  },
56
  "inputSchema" : [
57
  {
 
50
  },
51
  "userDefinedMetadata" : {
52
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
53
+ "com.github.apple.coremltools.source" : "torch==2.4.1",
54
+ "com.github.apple.coremltools.version" : "8.0"
55
  },
56
  "inputSchema" : [
57
  {
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/model.mil CHANGED
@@ -1,5 +1,5 @@
1
  program(1.0)
2
- [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0b2"}})]
3
  {
4
  func main<ios16>(tensor<fp16, [480000]> audio) {
5
  tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
 
1
  program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0"}})]
3
  {
4
  func main<ios16>(tensor<fp16, [480000]> audio) {
5
  tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ce6cafe8c9736165353d34f8427350274592882caf9f3e42f98be6ba766edd27
3
  size 243
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edb99a30ccee8e157fbec80dc3dce49349ba0982391b327d753e10ccab0a01c3
3
  size 243
openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f6b5f5752723b2f3dc4c15ce8dd872d91767052ba69458d7cf81d9433a74b978
3
- size 635
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65c043a081845d190918b4c7d244f94a55df1a15fae796abedc1f414995542c6
3
+ size 633
openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json CHANGED
@@ -85,7 +85,7 @@
85
  "userDefinedMetadata" : {
86
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
87
  "com.github.apple.coremltools.source" : "torch==2.4.1",
88
- "com.github.apple.coremltools.version" : "8.0b2"
89
  },
90
  "inputSchema" : [
91
  {
 
85
  "userDefinedMetadata" : {
86
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
87
  "com.github.apple.coremltools.source" : "torch==2.4.1",
88
+ "com.github.apple.coremltools.version" : "8.0"
89
  },
90
  "inputSchema" : [
91
  {
openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil CHANGED
The diff for this file is too large to render. See raw diff