--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0488 - Accuracy: 0.8207 - Precision: 0.9268 - Recall: 0.8840 - F1: 0.9030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0242 | 0.9971 | 173 | 0.0552 | 0.8452 | 0.8964 | 0.8905 | 0.8883 | | 0.0298 | 2.0 | 347 | 0.0488 | 0.8207 | 0.9268 | 0.8840 | 0.9030 | | 0.0236 | 2.9971 | 520 | 0.0484 | 0.8214 | 0.9338 | 0.8680 | 0.8971 | | 0.0298 | 4.0 | 694 | 0.0498 | 0.8251 | 0.9357 | 0.8719 | 0.9004 | | 0.0232 | 4.9971 | 867 | 0.0477 | 0.8281 | 0.9381 | 0.8732 | 0.9020 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1