---
library_name: peft
license: other
base_model: facebook/opt-125m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7c03aea4-2a29-4740-aa9e-d4f17adf6239
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: facebook/opt-125m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 8d80dfcbb444ae04_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8d80dfcbb444ae04_train_data.json
type:
field_instruction: text
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/7c03aea4-2a29-4740-aa9e-d4f17adf6239
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/8d80dfcbb444ae04_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 802638da-fd54-4d25-ad5b-57beacbf31a3
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: 802638da-fd54-4d25-ad5b-57beacbf31a3
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
```
# 7c03aea4-2a29-4740-aa9e-d4f17adf6239
This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co./facebook/opt-125m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8856
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0098 | 1 | 2.3276 |
| 9.8132 | 0.0490 | 5 | 2.2486 |
| 9.2482 | 0.0980 | 10 | 2.0860 |
| 8.1697 | 0.1471 | 15 | 2.0146 |
| 8.6968 | 0.1961 | 20 | 1.9683 |
| 8.0741 | 0.2451 | 25 | 1.9344 |
| 7.9488 | 0.2941 | 30 | 1.9185 |
| 8.7765 | 0.3431 | 35 | 1.8965 |
| 8.1578 | 0.3922 | 40 | 1.8888 |
| 7.9261 | 0.4412 | 45 | 1.8863 |
| 8.2143 | 0.4902 | 50 | 1.8856 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1