ardaspear commited on
Commit
36b422d
·
verified ·
1 Parent(s): 6e784de

End of training

Browse files
Files changed (2) hide show
  1. README.md +176 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 3035acbb-208c-45e8-b45a-42740f4e387f
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
23
+ bf16: true
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 4b9f7432feb5e651_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/4b9f7432feb5e651_train_data.json
32
+ type:
33
+ field_instruction: instruction
34
+ field_output: response
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ device_map: auto
42
+ do_eval: true
43
+ early_stopping_patience: 5
44
+ eval_batch_size: 4
45
+ eval_max_new_tokens: 128
46
+ eval_steps: 50
47
+ eval_table_size: null
48
+ evals_per_epoch: null
49
+ flash_attention: true
50
+ fp16: false
51
+ fsdp: null
52
+ fsdp_config: null
53
+ gradient_accumulation_steps: 4
54
+ gradient_checkpointing: true
55
+ group_by_length: true
56
+ hub_model_id: ardaspear/3035acbb-208c-45e8-b45a-42740f4e387f
57
+ hub_repo: null
58
+ hub_strategy: checkpoint
59
+ hub_token: null
60
+ learning_rate: 0.0002
61
+ load_in_4bit: false
62
+ load_in_8bit: false
63
+ local_rank: null
64
+ logging_steps: 10
65
+ lora_alpha: 128
66
+ lora_dropout: 0.3
67
+ lora_fan_in_fan_out: null
68
+ lora_model_dir: null
69
+ lora_modules_to_save:
70
+ - lm_head
71
+ lora_r: 64
72
+ lora_target_linear: true
73
+ loraplus_lr_ratio: 8
74
+ lr_scheduler: cosine
75
+ max_grad_norm: 1.0
76
+ max_memory:
77
+ 0: 75GB
78
+ max_steps: 600
79
+ micro_batch_size: 8
80
+ mlflow_experiment_name: /tmp/4b9f7432feb5e651_train_data.json
81
+ model_type: AutoModelForCausalLM
82
+ num_epochs: 3
83
+ optim_args:
84
+ adam_beta1: 0.9
85
+ adam_beta2: 0.95
86
+ adam_epsilon: 1.0e-05
87
+ optimizer: adamw_bnb_8bit
88
+ output_dir: miner_id_24
89
+ pad_to_sequence_len: true
90
+ peft_use_rslora: true
91
+ resume_from_checkpoint: null
92
+ s2_attention: null
93
+ sample_packing: false
94
+ save_steps: 150
95
+ saves_per_epoch: null
96
+ sequence_len: 1024
97
+ strict: false
98
+ tf32: true
99
+ tokenizer_type: AutoTokenizer
100
+ train_on_inputs: false
101
+ trust_remote_code: true
102
+ val_set_size: 0.05
103
+ wandb_entity: techspear-hub
104
+ wandb_mode: online
105
+ wandb_name: 11001b84-0290-4dbe-ace2-7cce8778af71
106
+ wandb_project: Gradients-On-Five
107
+ wandb_run: your_name
108
+ wandb_runid: 11001b84-0290-4dbe-ace2-7cce8778af71
109
+ warmup_steps: 10
110
+ weight_decay: 0.01
111
+ xformers_attention: null
112
+
113
+ ```
114
+
115
+ </details><br>
116
+
117
+ # 3035acbb-208c-45e8-b45a-42740f4e387f
118
+
119
+ This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset.
120
+ It achieves the following results on the evaluation set:
121
+ - Loss: 7.2856
122
+
123
+ ## Model description
124
+
125
+ More information needed
126
+
127
+ ## Intended uses & limitations
128
+
129
+ More information needed
130
+
131
+ ## Training and evaluation data
132
+
133
+ More information needed
134
+
135
+ ## Training procedure
136
+
137
+ ### Training hyperparameters
138
+
139
+ The following hyperparameters were used during training:
140
+ - learning_rate: 0.0002
141
+ - train_batch_size: 8
142
+ - eval_batch_size: 4
143
+ - seed: 42
144
+ - gradient_accumulation_steps: 4
145
+ - total_train_batch_size: 32
146
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
147
+ - lr_scheduler_type: cosine
148
+ - lr_scheduler_warmup_steps: 10
149
+ - training_steps: 600
150
+
151
+ ### Training results
152
+
153
+ | Training Loss | Epoch | Step | Validation Loss |
154
+ |:-------------:|:------:|:----:|:---------------:|
155
+ | No log | 0.0006 | 1 | 1.4292 |
156
+ | 83.1917 | 0.0307 | 50 | 31.8326 |
157
+ | 55.4798 | 0.0613 | 100 | 18.1148 |
158
+ | 34.554 | 0.0920 | 150 | 9.6674 |
159
+ | 31.387 | 0.1226 | 200 | 8.8578 |
160
+ | 30.4714 | 0.1533 | 250 | 8.1497 |
161
+ | 30.6027 | 0.1839 | 300 | 7.7460 |
162
+ | 32.9979 | 0.2146 | 350 | 8.0175 |
163
+ | 32.1933 | 0.2452 | 400 | 7.4365 |
164
+ | 30.9719 | 0.2759 | 450 | 7.3362 |
165
+ | 30.6896 | 0.3065 | 500 | 7.3630 |
166
+ | 30.1351 | 0.3372 | 550 | 7.2547 |
167
+ | 31.064 | 0.3678 | 600 | 7.2856 |
168
+
169
+
170
+ ### Framework versions
171
+
172
+ - PEFT 0.13.2
173
+ - Transformers 4.46.0
174
+ - Pytorch 2.5.0+cu124
175
+ - Datasets 3.0.1
176
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0578c445b49a3ad422af69827d884138e6da7a5ef13bdad9ca0577ff7f8cbaa5
3
+ size 933411406