File size: 6,115 Bytes
ab9a718 f91363c ab9a718 ca5dec1 ab9a718 f91363c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
license: apache-2.0
base_model:
- Qwen/Qwen2.5-14B
model-index:
- name: Virtuoso-Small
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 79.35
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 50.4
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 34.29
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.52
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.44
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.57
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
name: Open LLM Leaderboard
---
<div align="center">
<img src="https://i.ibb.co/pXD6Bcv/SW2-U-g-QQLSH1-ZAbxhs-Iu-A.webp" alt="Virtuoso-Small" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
</div>
GGUF Available [Here](https://huggingface.co./arcee-ai/Virtuoso-Small-GGUF)
# Virtuoso-Small
Virtuoso-Small is the debut public release of the Virtuoso series of models by Arcee.ai, designed to bring cutting-edge generative AI capabilities to organizations and developers in a compact, efficient form. With 14 billion parameters, Virtuoso-Small is an accessible entry point for high-quality instruction-following, complex reasoning, and business-oriented generative AI tasks. Its larger siblings, Virtuoso-Forte and Virtuoso-Prime, offer even greater capabilities and are available via API at [models.arcee.ai](https://models.arcee.ai).
## Performance Benchmarks
| **Groups** | **Metric** | ↑ | **Value** | ± | **Stderr** |
|---------------------------|--------------------------|---|----------:|----|-----------:|
| **Leaderboard** | **Accuracy** | ↑ | 0.5194 | ± | 0.0046 |
| | Normalized Accuracy | ↑ | 0.5814 | ± | 0.0051 |
| | Exact Match | ↑ | 0.3006 | ± | 0.0117 |
| | Instruction-Level Loose Accuracy | ↑ | 0.8489 | ± | N/A |
| | Instruction-Level Strict Accuracy | ↑ | 0.8249 | ± | N/A |
| | Prompt-Level Loose Accuracy | ↑ | 0.7856 | ± | 0.0177 |
| | Prompt-Level Strict Accuracy | ↑ | 0.7523 | ± | 0.0186 |
| **Leaderboard-BBH** | Normalized Accuracy | ↑ | 0.6516 | ± | 0.0058 |
| **Leaderboard-GPQA** | Normalized Accuracy | ↑ | 0.3389 | ± | 0.0137 |
| **Leaderboard-Math-Hard** | Exact Match | ↑ | 0.3006 | ± | 0.0117 |
| **Leaderboard-MuSR** | Normalized Accuracy | ↑ | 0.4286 | ± | 0.0175 |
---
## Key Features
- **Compact and Efficient**: With 14 billion parameters, Virtuoso-Small provides a high-performance solution optimized for smaller hardware configurations without sacrificing quality.
- **Business-Oriented**: Tailored for use cases such as customer support, content creation, and technical assistance, Virtuoso-Small meets the demands of modern enterprises.
- **Scalable Ecosystem**: Part of the Virtuoso series, Virtuoso-Small is fully interoperable with its larger siblings, Forte and Prime, enabling seamless scaling as your needs grow.
---
## Deployment Options
Virtuoso-Small is available under the Apache-2.0 license and can be deployed locally or accessed through an API at [models.arcee.ai](https://models.arcee.ai). For larger-scale or more demanding applications, consider Virtuoso-Forte or Virtuoso-Prime.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_arcee-ai__Virtuoso-Small)
| Metric |Value|
|-------------------|----:|
|Avg. |39.43|
|IFEval (0-Shot) |79.35|
|BBH (3-Shot) |50.40|
|MATH Lvl 5 (4-Shot)|34.29|
|GPQA (0-shot) |11.52|
|MuSR (0-shot) |14.44|
|MMLU-PRO (5-shot) |46.57|
|