update readme
Browse files
README.md
CHANGED
@@ -1,87 +1,77 @@
|
|
1 |
---
|
2 |
license: apple-ascl
|
3 |
pipeline_tag: depth-estimation
|
4 |
-
library_name: depth-pro
|
5 |
---
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
![Depth Pro Demo Image](https://github.com/apple/ml-depth-pro/raw/main/data/depth-pro-teaser.jpg)
|
10 |
-
|
11 |
-
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image.
|
12 |
-
|
13 |
-
Depth Pro was introduced in **[Depth Pro: Sharp Monocular Metric Depth in Less Than a Second](https://arxiv.org/abs/2410.02073)**, by *Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, and Vladlen Koltun*.
|
14 |
-
|
15 |
-
The checkpoint in this repository is a reference implementation, which has been re-trained. Its performance is close to the model reported in the paper but does not match it exactly.
|
16 |
-
|
17 |
-
## How to Use
|
18 |
-
|
19 |
-
Please, follow the steps in the [code repository](https://github.com/apple/ml-depth-pro) to set up your environment. Then you can download the checkpoint from the _Files and versions_ tab above, or use the `huggingface-hub` CLI:
|
20 |
|
|
|
21 |
```bash
|
22 |
-
pip install
|
23 |
-
|
24 |
```
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
```bash
|
31 |
-
# Run prediction on a single image:
|
32 |
-
depth-pro-run -i ./data/example.jpg
|
33 |
-
# Run `depth-pro-run -h` for available options.
|
34 |
-
```
|
35 |
-
|
36 |
-
### Running from Python
|
37 |
-
|
38 |
-
```python
|
39 |
from PIL import Image
|
40 |
-
import
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
# Run inference.
|
51 |
-
prediction = model.infer(image, f_px=f_px)
|
52 |
-
depth = prediction["depth"] # Depth in [m].
|
53 |
-
focallength_px = prediction["focallength_px"] # Focal length in pixels.
|
54 |
```
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# for a mask-based dataset (image matting / segmentation)
|
65 |
-
boundary_recall = SI_boundary_Recall(predicted_depth, target_mask)
|
66 |
```
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
```
|
82 |
-
|
83 |
-
## Acknowledgements
|
84 |
-
|
85 |
-
Our codebase is built using multiple opensource contributions, please see [Acknowledgements](https://github.com/apple/ml-depth-pro/blob/main/ACKNOWLEDGEMENTS.md) for more details.
|
86 |
-
|
87 |
-
Please check the paper for a complete list of references and datasets used in this work.
|
|
|
1 |
---
|
2 |
license: apple-ascl
|
3 |
pipeline_tag: depth-estimation
|
|
|
4 |
---
|
5 |
|
6 |
+
# DepthPro: Monocular Depth Estimation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
Install the required libraries:
|
9 |
```bash
|
10 |
+
pip install -q numpy pillow torch torchvision
|
11 |
+
pip install -q git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
|
12 |
```
|
13 |
|
14 |
+
Import the required libraries:
|
15 |
+
```py
|
16 |
+
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
from PIL import Image
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from huggingface_hub import hf_hub_download
|
22 |
+
import matplotlib.pyplot as plt
|
23 |
+
|
24 |
+
# custom installation from this PR: https://github.com/huggingface/transformers/pull/34583
|
25 |
+
# !pip install git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
|
26 |
+
from transformers import DepthProConfig, DepthProImageProcessorFast, DepthProForDepthEstimation
|
|
|
|
|
|
|
|
|
|
|
27 |
```
|
28 |
|
29 |
+
Load the model and image processor:
|
30 |
+
```py
|
31 |
+
checkpoint = "geetu040/DepthPro"
|
32 |
+
revision = "project"
|
33 |
+
image_processor = DepthProImageProcessorFast.from_pretrained(checkpoint, revision=revision)
|
34 |
+
model = DepthProForDepthEstimation.from_pretrained(checkpoint, revision=revision)
|
35 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
model = model.to(device)
|
|
|
|
|
37 |
```
|
38 |
|
39 |
+
Inference:
|
40 |
+
```py
|
41 |
+
# inference
|
42 |
+
|
43 |
+
url = "https://huggingface.co/spaces/geetu040/DepthPro_Segmentation_Human/resolve/main/assets/examples/man_with_arms_open.jpg"
|
44 |
+
|
45 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
46 |
+
image = image.convert("RGB")
|
47 |
+
|
48 |
+
# prepare image for the model
|
49 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
50 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model(**inputs)
|
54 |
+
|
55 |
+
# interpolate to original size
|
56 |
+
post_processed_output = image_processor.post_process_depth_estimation(
|
57 |
+
outputs, target_sizes=[(image.height, image.width)],
|
58 |
+
)
|
59 |
+
|
60 |
+
# visualize the prediction
|
61 |
+
depth = post_processed_output[0]["predicted_depth"]
|
62 |
+
depth = (depth - depth.min()) / depth.max()
|
63 |
+
depth = depth * 255.
|
64 |
+
depth = depth.detach().cpu().numpy()
|
65 |
+
depth = Image.fromarray(depth.astype("uint8"))
|
66 |
+
|
67 |
+
# visualize the prediction
|
68 |
+
fig, axes = plt.subplots(1, 2, figsize=(20, 20))
|
69 |
+
axes[0].imshow(image)
|
70 |
+
axes[0].set_title(f'Image {image.size}')
|
71 |
+
axes[0].axis('off')
|
72 |
+
axes[1].imshow(depth)
|
73 |
+
axes[1].set_title(f'Depth {depth.size}')
|
74 |
+
axes[1].axis('off')
|
75 |
+
plt.subplots_adjust(wspace=0, hspace=0)
|
76 |
+
plt.show()
|
77 |
```
|
|
|
|
|
|
|
|
|
|
|
|