Update README.md
Browse files
README.md
CHANGED
@@ -254,7 +254,98 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
254 |
RealFormer is a Transformer-based low-latency Style Transfer Generative LM that attempts to reconstruct each frame into a more photorealistic image.
|
255 |
The objective of RealFormer is to attain the maximum level of detail to the real-world, which even current video games with exhaustive graphics are not able to.
|
256 |
|
257 |
-
**Architecture:** The
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
```python
|
260 |
RealFormerv3(
|
|
|
254 |
RealFormer is a Transformer-based low-latency Style Transfer Generative LM that attempts to reconstruct each frame into a more photorealistic image.
|
255 |
The objective of RealFormer is to attain the maximum level of detail to the real-world, which even current video games with exhaustive graphics are not able to.
|
256 |
|
257 |
+
**Flagship Architecture v4:** The v4 model builds upon the previous version by introducing **Attention Guided Attention (AGA)**, which leverages learned attention weights from a motion-guided cross-attention preprocessing stage. These pre-learned weights, conditioned into the untrained attention mechanism, improve the model's ability to focus on dynamic regions within consecutive frames. Additionally, v4 continues to incorporate **Style Adaptive Layer Normalization (SALN)** to enhance feature extraction. This architecture significantly improves temporal coherence and photorealistic enhancement by transferring knowledge from motion vector-based attention, without retraining the learned weights, leading to more efficient training and better performance in capturing real-world dynamics.
|
258 |
+
|
259 |
+
```python
|
260 |
+
RealFormerAGA(
|
261 |
+
(patch_embed): DynamicPatchEmbedding(
|
262 |
+
(proj): Conv2d(2048, 768, kernel_size=(1, 1), stride=(1, 1))
|
263 |
+
)
|
264 |
+
(encoder_layers): ModuleList(
|
265 |
+
(0-15): 16 x TransformerEncoderBlock(
|
266 |
+
(attn): CrossAttentionLayer(
|
267 |
+
(attn): MultiheadAttention(
|
268 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
269 |
+
)
|
270 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
271 |
+
)
|
272 |
+
(ff): Sequential(
|
273 |
+
(0): Linear(in_features=768, out_features=3072, bias=True)
|
274 |
+
(1): ReLU()
|
275 |
+
(2): Linear(in_features=3072, out_features=768, bias=True)
|
276 |
+
)
|
277 |
+
(norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
278 |
+
(norm2): StyleAdaptiveLayerNorm(
|
279 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
280 |
+
(fc): Linear(in_features=768, out_features=1536, bias=True)
|
281 |
+
)
|
282 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
283 |
+
)
|
284 |
+
)
|
285 |
+
(decoder_layers): ModuleList(
|
286 |
+
(0-15): 16 x TransformerDecoderBlock(
|
287 |
+
(attn1): CrossAttentionLayer(
|
288 |
+
(attn): MultiheadAttention(
|
289 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
290 |
+
)
|
291 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
292 |
+
)
|
293 |
+
(attn2): CrossAttentionLayer(
|
294 |
+
(attn): MultiheadAttention(
|
295 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
296 |
+
)
|
297 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
298 |
+
)
|
299 |
+
(ff): Sequential(
|
300 |
+
(0): Linear(in_features=768, out_features=3072, bias=True)
|
301 |
+
(1): ReLU()
|
302 |
+
(2): Linear(in_features=3072, out_features=768, bias=True)
|
303 |
+
)
|
304 |
+
(norm1): StyleAdaptiveLayerNorm(
|
305 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
306 |
+
(fc): Linear(in_features=768, out_features=1536, bias=True)
|
307 |
+
)
|
308 |
+
(norm2): StyleAdaptiveLayerNorm(
|
309 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
310 |
+
(fc): Linear(in_features=768, out_features=1536, bias=True)
|
311 |
+
)
|
312 |
+
(norm3): StyleAdaptiveLayerNorm(
|
313 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
314 |
+
(fc): Linear(in_features=768, out_features=1536, bias=True)
|
315 |
+
)
|
316 |
+
)
|
317 |
+
)
|
318 |
+
(swin_layers): ModuleList(
|
319 |
+
(0-15): 16 x SwinTransformerBlock(
|
320 |
+
(attn): MultiheadAttention(
|
321 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
322 |
+
)
|
323 |
+
(mlp): Sequential(
|
324 |
+
(0): Linear(in_features=768, out_features=3072, bias=True)
|
325 |
+
(1): GELU(approximate='none')
|
326 |
+
(2): Linear(in_features=3072, out_features=768, bias=True)
|
327 |
+
)
|
328 |
+
(norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
329 |
+
(norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
330 |
+
)
|
331 |
+
)
|
332 |
+
(refinement): RefinementBlock(
|
333 |
+
(conv): Conv2d(768, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
334 |
+
(bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
335 |
+
(relu): ReLU(inplace=True)
|
336 |
+
)
|
337 |
+
(final_layer): Conv2d(3, 2048, kernel_size=(1, 1), stride=(1, 1))
|
338 |
+
(style_encoder): Sequential(
|
339 |
+
(0): Conv2d(2048, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
340 |
+
(1): ReLU()
|
341 |
+
(2): AdaptiveAvgPool2d(output_size=1)
|
342 |
+
(3): Flatten(start_dim=1, end_dim=-1)
|
343 |
+
(4): Linear(in_features=768, out_features=768, bias=True)
|
344 |
+
)
|
345 |
+
)
|
346 |
+
```
|
347 |
+
|
348 |
+
**v3 Architecture:** The v3 model introduces Style Adaptive Layer Normalization (SALN) & Location-based Multi-head Attention (LbMhA) to improve feature extraction at lower parameters. The two other predecessors attained a similar level of accuracy without the LbMhA layers, but with SALN, outperformed by upto ~13%. The general architecture is as follows:
|
349 |
|
350 |
```python
|
351 |
RealFormerv3(
|