# Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-tiny-random") model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-tiny-random", trust_remote_code=True) from datasets import load_dataset from trl import SFTTrainer from peft import LoraConfig dataset=load_dataset("rajeshradhakrishnan/malayalam_wiki") training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=3, logging_dir='./logs', logging_steps=10, learning_rate=2e-3 ) lora_config = LoraConfig( r=8, target_modules=["embed_tokens", "x_proj", "in_proj", "out_proj"], task_type="CAUSAL_LM", bias="none" ) trainer = SFTTrainer( model=model, tokenizer=tokenizer, args=training_args, peft_config=lora_config, train_dataset=dataset["train"], dataset_text_field="text", ) trainer.train()