--- license: mit base_model: dslim/bert-base-NER tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_finetuned_wnut_model_1012 results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5479274611398963 - name: Recall type: recall value: 0.39202965708989806 - name: F1 type: f1 value: 0.45705024311183146 - name: Accuracy type: accuracy value: 0.9487047961015646 --- # my_finetuned_wnut_model_1012 This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co./dslim/bert-base-NER) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2940 - Precision: 0.5479 - Recall: 0.3920 - F1: 0.4571 - Accuracy: 0.9487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2657 | 0.5157 | 0.3967 | 0.4484 | 0.9468 | | No log | 2.0 | 426 | 0.2940 | 0.5479 | 0.3920 | 0.4571 | 0.9487 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1