--- language: - hi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 hi type: mozilla-foundation/common_voice_11_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 22.429210134128166 --- # Whisper Small Hindi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the mozilla-foundation/common_voice_11_0 hi dataset. It achieves the following results on the evaluation set: - Loss: 0.6260 - Wer: 22.4292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0176 | 7.01 | 500 | 0.4165 | 22.5066 | | 0.0015 | 14.01 | 1000 | 0.5186 | 22.2573 | | 0.0004 | 21.02 | 1500 | 0.5741 | 22.2401 | | 0.0002 | 28.02 | 2000 | 0.6025 | 22.3834 | | 0.0002 | 36.01 | 2500 | 0.6197 | 22.3977 | | 0.0002 | 43.01 | 3000 | 0.6260 | 22.4292 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2