File size: 2,745 Bytes
7cf5aec
03998b9
 
7cf5aec
 
03998b9
 
7cf5aec
 
0fee38b
 
 
7cf5aec
0fee38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cf5aec
 
 
 
 
 
 
03998b9
7cf5aec
03998b9
 
 
7cf5aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
language:
- ur
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_9_0
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_9_0
metrics:
- wer
model-index:
- name: XLS-R-300M - Urdu
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      type: mozilla-foundation/common_voice_9_0
      name: Common Voice 9
      args: ur
    metrics:
    - type: wer
      value: 23.750
      name: Test WER
    - name: Test CER
      type: cer
      value: 8.310
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - UR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4147
- Wer: 0.3172
- Cer: 0.1050

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 5108
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.2894        | 7.83  | 400  | 3.1501          | 1.0    | 1.0    |
| 1.8586        | 15.68 | 800  | 0.8871          | 0.6721 | 0.2402 |
| 1.3431        | 23.52 | 1200 | 0.5813          | 0.5502 | 0.1939 |
| 1.2052        | 31.37 | 1600 | 0.4956          | 0.4788 | 0.1665 |
| 1.1097        | 39.21 | 2000 | 0.4447          | 0.4143 | 0.1397 |
| 1.0528        | 47.06 | 2400 | 0.4439          | 0.3961 | 0.1333 |
| 0.9939        | 54.89 | 2800 | 0.4348          | 0.4014 | 0.1379 |
| 0.9441        | 62.74 | 3200 | 0.4236          | 0.3653 | 0.1223 |
| 0.913         | 70.58 | 3600 | 0.4309          | 0.3475 | 0.1157 |
| 0.8678        | 78.43 | 4000 | 0.4270          | 0.3337 | 0.1110 |
| 0.8414        | 86.27 | 4400 | 0.4158          | 0.3220 | 0.1070 |
| 0.817         | 94.12 | 4800 | 0.4185          | 0.3231 | 0.1072 |


### Framework versions

- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.1.1.dev0
- Tokenizers 0.12.1