anuragshas commited on
Commit
edd7dcf
·
1 Parent(s): 308c555

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
- value: 78.08
27
  ---
28
  # Wav2Vec2-Large-XLSR-53-Odia
29
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice).
@@ -66,7 +66,7 @@ wer = load_metric("wer")
66
  processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
67
  model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
68
  model.to("cuda")
69
- chars_to_ignore_regex = '[\\!\\"\\'\\,\\-\\:\\;\\?\\|\\।\\–\\’\\“\\”]'
70
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
71
  # Preprocessing the datasets.
72
  # We need to read the aduio files as arrays
@@ -88,6 +88,6 @@ def evaluate(batch):
88
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
89
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
90
  ```
91
- **Test Result**: 78.08 %
92
  ## Training
93
  The Common Voice `train` and `validation` datasets were used for training.
 
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
+ value: 57.10
27
  ---
28
  # Wav2Vec2-Large-XLSR-53-Odia
29
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice).
 
66
  processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
67
  model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
68
  model.to("cuda")
69
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
70
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
71
  # Preprocessing the datasets.
72
  # We need to read the aduio files as arrays
 
88
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
89
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
90
  ```
91
+ **Test Result**: 57.10 %
92
  ## Training
93
  The Common Voice `train` and `validation` datasets were used for training.