--- language: - as license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-as results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: as metrics: - type: wer value: 56.995 name: Test WER - name: Test CER type: cer value: 20.39 --- # wav2vec2-large-xls-r-300m-as This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.9068 - Wer: 0.6679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.7027 | 21.05 | 400 | 3.4157 | 1.0 | | 1.1638 | 42.1 | 800 | 1.3498 | 0.7461 | | 0.2266 | 63.15 | 1200 | 1.6147 | 0.7273 | | 0.1473 | 84.21 | 1600 | 1.6649 | 0.7108 | | 0.1043 | 105.26 | 2000 | 1.7691 | 0.7090 | | 0.0779 | 126.31 | 2400 | 1.8300 | 0.7009 | | 0.0613 | 147.36 | 2800 | 1.8681 | 0.6916 | | 0.0471 | 168.41 | 3200 | 1.8567 | 0.6875 | | 0.0343 | 189.46 | 3600 | 1.9054 | 0.6840 | | 0.0265 | 210.51 | 4000 | 1.9020 | 0.6786 | | 0.0219 | 231.56 | 4400 | 1.9068 | 0.6679 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-as --dataset mozilla-foundation/common_voice_7_0 --config as --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-as" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "as", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "জাহাজত তো তিশকুৰলৈ যাব কিন্তু জহাজিটো আহিপনে" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 67 | 56.995 |