anuragshas
commited on
Commit
β’
4fa60f6
1
Parent(s):
47dba72
Update eval.py
Browse files
eval.py
CHANGED
@@ -3,6 +3,7 @@ import argparse
|
|
3 |
import re
|
4 |
from typing import Dict
|
5 |
|
|
|
6 |
from datasets import Audio, Dataset, load_dataset, load_metric
|
7 |
|
8 |
from transformers import AutoFeatureExtractor, pipeline
|
@@ -19,8 +20,12 @@ def log_results(result: Dataset, args: Dict[str, str]):
|
|
19 |
cer = load_metric("cer")
|
20 |
|
21 |
# compute metrics
|
22 |
-
wer_result = wer.compute(
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# print & log results
|
26 |
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
@@ -49,12 +54,12 @@ def log_results(result: Dataset, args: Dict[str, str]):
|
|
49 |
def normalize_text(text: str) -> str:
|
50 |
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
51 |
|
52 |
-
chars_to_ignore_regex =
|
53 |
|
54 |
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
55 |
-
text = re.sub(
|
56 |
-
text = re.sub(
|
57 |
-
text = re.sub(
|
58 |
|
59 |
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
60 |
# note that order is important here!
|
@@ -68,7 +73,9 @@ def normalize_text(text: str) -> str:
|
|
68 |
|
69 |
def main(args):
|
70 |
# load dataset
|
71 |
-
dataset = load_dataset(
|
|
|
|
|
72 |
|
73 |
# for testing: only process the first two examples as a test
|
74 |
# dataset = dataset.select(range(10))
|
@@ -81,12 +88,18 @@ def main(args):
|
|
81 |
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
82 |
|
83 |
# load eval pipeline
|
84 |
-
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# map function to decode audio
|
87 |
def map_to_pred(batch):
|
88 |
prediction = asr(
|
89 |
-
batch["audio"]["array"],
|
|
|
|
|
90 |
)
|
91 |
|
92 |
batch["prediction"] = prediction["text"]
|
@@ -105,7 +118,10 @@ if __name__ == "__main__":
|
|
105 |
parser = argparse.ArgumentParser()
|
106 |
|
107 |
parser.add_argument(
|
108 |
-
"--model_id",
|
|
|
|
|
|
|
109 |
)
|
110 |
parser.add_argument(
|
111 |
"--dataset",
|
@@ -114,18 +130,37 @@ if __name__ == "__main__":
|
|
114 |
help="Dataset name to evaluate the `model_id`. Should be loadable with π€ Datasets",
|
115 |
)
|
116 |
parser.add_argument(
|
117 |
-
"--config",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
)
|
119 |
-
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
120 |
parser.add_argument(
|
121 |
-
"--
|
|
|
|
|
|
|
122 |
)
|
123 |
parser.add_argument(
|
124 |
-
"--
|
|
|
|
|
125 |
)
|
126 |
parser.add_argument(
|
127 |
-
"--
|
|
|
|
|
|
|
128 |
)
|
129 |
args = parser.parse_args()
|
130 |
|
131 |
-
main(args)
|
|
|
3 |
import re
|
4 |
from typing import Dict
|
5 |
|
6 |
+
import torch
|
7 |
from datasets import Audio, Dataset, load_dataset, load_metric
|
8 |
|
9 |
from transformers import AutoFeatureExtractor, pipeline
|
|
|
20 |
cer = load_metric("cer")
|
21 |
|
22 |
# compute metrics
|
23 |
+
wer_result = wer.compute(
|
24 |
+
references=result["target"], predictions=result["prediction"]
|
25 |
+
)
|
26 |
+
cer_result = cer.compute(
|
27 |
+
references=result["target"], predictions=result["prediction"]
|
28 |
+
)
|
29 |
|
30 |
# print & log results
|
31 |
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
|
|
54 |
def normalize_text(text: str) -> str:
|
55 |
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
56 |
|
57 |
+
chars_to_ignore_regex = """[\ΰ₯€\!\"\,\-\.\?\:\|\β\β]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
58 |
|
59 |
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
60 |
+
text = re.sub("β ", " ", text)
|
61 |
+
text = re.sub(" β", " ", text)
|
62 |
+
text = re.sub("β|β", "'", text)
|
63 |
|
64 |
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
65 |
# note that order is important here!
|
|
|
73 |
|
74 |
def main(args):
|
75 |
# load dataset
|
76 |
+
dataset = load_dataset(
|
77 |
+
args.dataset, args.config, split=args.split, use_auth_token=True
|
78 |
+
)
|
79 |
|
80 |
# for testing: only process the first two examples as a test
|
81 |
# dataset = dataset.select(range(10))
|
|
|
88 |
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
89 |
|
90 |
# load eval pipeline
|
91 |
+
if args.device is None:
|
92 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
93 |
+
asr = pipeline(
|
94 |
+
"automatic-speech-recognition", model=args.model_id, device=args.device
|
95 |
+
)
|
96 |
|
97 |
# map function to decode audio
|
98 |
def map_to_pred(batch):
|
99 |
prediction = asr(
|
100 |
+
batch["audio"]["array"],
|
101 |
+
chunk_length_s=args.chunk_length_s,
|
102 |
+
stride_length_s=args.stride_length_s,
|
103 |
)
|
104 |
|
105 |
batch["prediction"] = prediction["text"]
|
|
|
118 |
parser = argparse.ArgumentParser()
|
119 |
|
120 |
parser.add_argument(
|
121 |
+
"--model_id",
|
122 |
+
type=str,
|
123 |
+
required=True,
|
124 |
+
help="Model identifier. Should be loadable with π€ Transformers",
|
125 |
)
|
126 |
parser.add_argument(
|
127 |
"--dataset",
|
|
|
130 |
help="Dataset name to evaluate the `model_id`. Should be loadable with π€ Datasets",
|
131 |
)
|
132 |
parser.add_argument(
|
133 |
+
"--config",
|
134 |
+
type=str,
|
135 |
+
required=True,
|
136 |
+
help="Config of the dataset. *E.g.* `'en'` for Common Voice",
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
140 |
+
)
|
141 |
+
parser.add_argument(
|
142 |
+
"--chunk_length_s",
|
143 |
+
type=float,
|
144 |
+
default=None,
|
145 |
+
help="Chunk length in seconds. Defaults to 5 seconds.",
|
146 |
)
|
|
|
147 |
parser.add_argument(
|
148 |
+
"--stride_length_s",
|
149 |
+
type=float,
|
150 |
+
default=None,
|
151 |
+
help="Stride of the audio chunks. Defaults to 1 second.",
|
152 |
)
|
153 |
parser.add_argument(
|
154 |
+
"--log_outputs",
|
155 |
+
action="store_true",
|
156 |
+
help="If defined, write outputs to log file for analysis.",
|
157 |
)
|
158 |
parser.add_argument(
|
159 |
+
"--device",
|
160 |
+
type=int,
|
161 |
+
default=None,
|
162 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
163 |
)
|
164 |
args = parser.parse_args()
|
165 |
|
166 |
+
main(args)
|