## TTS example web-server You'll need a model package (Zip file, includes TTS Python wheel, model files, server configuration, and optional nginx/uwsgi configs). Publicly available models are listed [here](https://github.com/mozilla/TTS/wiki/Released-Models#simple-packaging---self-contained-package-that-runs-an-http-api-for-a-pre-trained-tts-model). Instructions below are based on a Ubuntu 18.04 machine, but it should be simple to adapt the package names to other distros if needed. Python 3.6 is recommended, as some of the dependencies' versions predate Python 3.7 and will force building from source, which requires extra dependencies and is not guaranteed to work. #### Development server: ##### Using server.py If you have the environment set already for TTS, then you can directly call ```server.py```. **Note:** After installing TTS as a package you can use ```tts-server``` to call the commands below. Examples runs: List officially released models. ```python TTS/server/server.py --list_models ``` Run the server with the official models. ```python TTS/server/server.py --model_name tts_models/en/ljspeech/tacotron2-DCA --vocoder_name vocoder_models/en/ljspeech/mulitband-melgan``` Run the server with the official models on a GPU. ```CUDA_VISIBLE_DEVICES="0" python TTS/server/server.py --model_name tts_models/en/ljspeech/tacotron2-DCA --vocoder_name vocoder_models/en/ljspeech/mulitband-melgan --use_cuda True``` Run the server with a custom models. ```python TTS/server/server.py --tts_checkpoint /path/to/tts/model.pth.tar --tts_config /path/to/tts/config.json --vocoder_checkpoint /path/to/vocoder/model.pth.tar --vocoder_config /path/to/vocoder/config.json``` ##### Using .whl 1. apt-get install -y espeak libsndfile1 python3-venv 2. python3 -m venv /tmp/venv 3. source /tmp/venv/bin/activate 4. pip install -U pip setuptools wheel 5. pip install -U https//example.com/url/to/python/package.whl 6. python -m TTS.server.server You can now open http://localhost:5002 in a browser #### Running with nginx/uwsgi: **Note:** This method uses an old TTS model, so quality might be low. 1. apt-get install -y uwsgi uwsgi-plugin-python3 nginx espeak libsndfile1 python3-venv 2. python3 -m venv /tmp/venv 3. source /tmp/venv/bin/activate 4. pip install -U pip setuptools wheel 5. pip install -U https//example.com/url/to/python/package.whl 6. curl -LO https://github.com/reuben/TTS/releases/download/t2-ljspeech-mold/t2-ljspeech-mold-nginx-uwsgi.zip 7. unzip *-nginx-uwsgi.zip 8. cp tts_site_nginx /etc/nginx/sites-enabled/default 9. service nginx restart 10. uwsgi --ini uwsgi.ini You can now open http://localhost:80 in a browser (edit the port in /etc/nginx/sites-enabled/tts_site_nginx). Configure number of workers (number of requests that will be processed in parallel) by editing the `uwsgi.ini` file, specifically the `processes` setting. #### Creating a server package with an embedded model [setup.py](../setup.py) was extended with two new parameters when running the `bdist_wheel` command: - `--checkpoint ` - path to model checkpoint file you want to embed in the package - `--model_config ` - path to corresponding config.json file for the checkpoint To create a package, run `python setup.py bdist_wheel --checkpoint /path/to/checkpoint --model_config /path/to/config.json`. A Python `.whl` file will be created in the `dist/` folder with the checkpoint and config embedded in it.