|
import copy |
|
import os |
|
import unittest |
|
|
|
import torch |
|
from tests import get_tests_input_path |
|
from torch import optim |
|
|
|
from TTS.tts.layers.losses import GlowTTSLoss |
|
from TTS.tts.models.glow_tts import GlowTts |
|
from TTS.utils.io import load_config |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
|
|
|
|
torch.manual_seed(1) |
|
use_cuda = torch.cuda.is_available() |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
c = load_config(os.path.join(get_tests_input_path(), 'test_config.json')) |
|
|
|
ap = AudioProcessor(**c.audio) |
|
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") |
|
|
|
|
|
def count_parameters(model): |
|
r"""Count number of trainable parameters in a network""" |
|
return sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
|
|
class GlowTTSTrainTest(unittest.TestCase): |
|
@staticmethod |
|
def test_train_step(): |
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 129, (8, )).long().to(device) |
|
input_lengths[-1] = 128 |
|
mel_spec = torch.rand(8, c.audio['num_mels'], 30).to(device) |
|
linear_spec = torch.rand(8, 30, c.audio['fft_size']).to(device) |
|
mel_lengths = torch.randint(20, 30, (8, )).long().to(device) |
|
speaker_ids = torch.randint(0, 5, (8, )).long().to(device) |
|
|
|
criterion = criterion = GlowTTSLoss() |
|
|
|
|
|
model = GlowTts( |
|
num_chars=32, |
|
hidden_channels_enc=128, |
|
hidden_channels_dec=128, |
|
hidden_channels_dp=32, |
|
out_channels=80, |
|
encoder_type='rel_pos_transformer', |
|
encoder_params={ |
|
'kernel_size': 3, |
|
'dropout_p': 0.1, |
|
'num_layers': 6, |
|
'num_heads': 2, |
|
'hidden_channels_ffn': 768, |
|
'input_length': None |
|
}, |
|
use_encoder_prenet=True, |
|
num_flow_blocks_dec=12, |
|
kernel_size_dec=5, |
|
dilation_rate=5, |
|
num_block_layers=4, |
|
dropout_p_dec=0., |
|
num_speakers=0, |
|
c_in_channels=0, |
|
num_splits=4, |
|
num_squeeze=1, |
|
sigmoid_scale=False, |
|
mean_only=False).to(device) |
|
|
|
|
|
model_ref = GlowTts( |
|
num_chars=32, |
|
hidden_channels_enc=128, |
|
hidden_channels_dec=128, |
|
hidden_channels_dp=32, |
|
out_channels=80, |
|
encoder_type='rel_pos_transformer', |
|
encoder_params={ |
|
'kernel_size': 3, |
|
'dropout_p': 0.1, |
|
'num_layers': 6, |
|
'num_heads': 2, |
|
'hidden_channels_ffn': 768, |
|
'input_length': None |
|
}, |
|
use_encoder_prenet=True, |
|
num_flow_blocks_dec=12, |
|
kernel_size_dec=5, |
|
dilation_rate=5, |
|
num_block_layers=4, |
|
dropout_p_dec=0., |
|
num_speakers=0, |
|
c_in_channels=0, |
|
num_splits=4, |
|
num_squeeze=1, |
|
sigmoid_scale=False, |
|
mean_only=False).to(device) |
|
|
|
model.train() |
|
print(" > Num parameters for GlowTTS model:%s" % |
|
(count_parameters(model))) |
|
|
|
|
|
model_ref.load_state_dict(copy.deepcopy(model.state_dict())) |
|
|
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), |
|
model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
|
|
optimizer = optim.Adam(model.parameters(), lr=c.lr) |
|
for _ in range(5): |
|
z, logdet, y_mean, y_log_scale, alignments, o_dur_log, o_total_dur = model.forward( |
|
input_dummy, input_lengths, mel_spec, mel_lengths, None) |
|
optimizer.zero_grad() |
|
loss_dict = criterion(z, y_mean, y_log_scale, logdet, mel_lengths, |
|
o_dur_log, o_total_dur, input_lengths) |
|
loss = loss_dict['loss'] |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), |
|
model_ref.parameters()): |
|
assert (param != param_ref).any( |
|
), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref) |
|
count += 1 |