File size: 11,148 Bytes
2493d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import math
import torch
from torch import nn
from torch.nn import functional as F
from TTS.tts.layers.glow_tts.encoder import Encoder
from TTS.tts.layers.glow_tts.decoder import Decoder
from TTS.tts.utils.generic_utils import sequence_mask
from TTS.tts.layers.glow_tts.monotonic_align import maximum_path, generate_path
class GlowTts(nn.Module):
"""Glow TTS models from https://arxiv.org/abs/2005.11129
Args:
num_chars (int): number of embedding characters.
hidden_channels_enc (int): number of embedding and encoder channels.
hidden_channels_dec (int): number of decoder channels.
use_encoder_prenet (bool): enable/disable prenet for encoder. Prenet modules are hard-coded for each alternative encoder.
hidden_channels_dp (int): number of duration predictor channels.
out_channels (int): number of output channels. It should be equal to the number of spectrogram filter.
num_flow_blocks_dec (int): number of decoder blocks.
kernel_size_dec (int): decoder kernel size.
dilation_rate (int): rate to increase dilation by each layer in a decoder block.
num_block_layers (int): number of decoder layers in each decoder block.
dropout_p_dec (float): dropout rate for decoder.
num_speaker (int): number of speaker to define the size of speaker embedding layer.
c_in_channels (int): number of speaker embedding channels. It is set to 512 if embeddings are learned.
num_splits (int): number of split levels in inversible conv1x1 operation.
num_squeeze (int): number of squeeze levels. When squeezing channels increases and time steps reduces by the factor 'num_squeeze'.
sigmoid_scale (bool): enable/disable sigmoid scaling in decoder.
mean_only (bool): if True, encoder only computes mean value and uses constant variance for each time step.
encoder_type (str): encoder module type.
encoder_params (dict): encoder module parameters.
external_speaker_embedding_dim (int): channels of external speaker embedding vectors.
"""
def __init__(self,
num_chars,
hidden_channels_enc,
hidden_channels_dec,
use_encoder_prenet,
hidden_channels_dp,
out_channels,
num_flow_blocks_dec=12,
kernel_size_dec=5,
dilation_rate=5,
num_block_layers=4,
dropout_p_dp=0.1,
dropout_p_dec=0.05,
num_speakers=0,
c_in_channels=0,
num_splits=4,
num_squeeze=1,
sigmoid_scale=False,
mean_only=False,
encoder_type="transformer",
encoder_params=None,
external_speaker_embedding_dim=None):
super().__init__()
self.num_chars = num_chars
self.hidden_channels_dp = hidden_channels_dp
self.hidden_channels_enc = hidden_channels_enc
self.hidden_channels_dec = hidden_channels_dec
self.out_channels = out_channels
self.num_flow_blocks_dec = num_flow_blocks_dec
self.kernel_size_dec = kernel_size_dec
self.dilation_rate = dilation_rate
self.num_block_layers = num_block_layers
self.dropout_p_dec = dropout_p_dec
self.num_speakers = num_speakers
self.c_in_channels = c_in_channels
self.num_splits = num_splits
self.num_squeeze = num_squeeze
self.sigmoid_scale = sigmoid_scale
self.mean_only = mean_only
self.use_encoder_prenet = use_encoder_prenet
# model constants.
self.noise_scale = 0.33 # defines the noise variance applied to the random z vector at inference.
self.length_scale = 1. # scaler for the duration predictor. The larger it is, the slower the speech.
self.external_speaker_embedding_dim = external_speaker_embedding_dim
# if is a multispeaker and c_in_channels is 0, set to 256
if num_speakers > 1:
if self.c_in_channels == 0 and not self.external_speaker_embedding_dim:
self.c_in_channels = 512
elif self.external_speaker_embedding_dim:
self.c_in_channels = self.external_speaker_embedding_dim
self.encoder = Encoder(num_chars,
out_channels=out_channels,
hidden_channels=hidden_channels_enc,
hidden_channels_dp=hidden_channels_dp,
encoder_type=encoder_type,
encoder_params=encoder_params,
mean_only=mean_only,
use_prenet=use_encoder_prenet,
dropout_p_dp=dropout_p_dp,
c_in_channels=self.c_in_channels)
self.decoder = Decoder(out_channels,
hidden_channels_dec,
kernel_size_dec,
dilation_rate,
num_flow_blocks_dec,
num_block_layers,
dropout_p=dropout_p_dec,
num_splits=num_splits,
num_squeeze=num_squeeze,
sigmoid_scale=sigmoid_scale,
c_in_channels=self.c_in_channels)
if num_speakers > 1 and not external_speaker_embedding_dim:
# speaker embedding layer
self.emb_g = nn.Embedding(num_speakers, self.c_in_channels)
nn.init.uniform_(self.emb_g.weight, -0.1, 0.1)
@staticmethod
def compute_outputs(attn, o_mean, o_log_scale, x_mask):
# compute final values with the computed alignment
y_mean = torch.matmul(
attn.squeeze(1).transpose(1, 2), o_mean.transpose(1, 2)).transpose(
1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
y_log_scale = torch.matmul(
attn.squeeze(1).transpose(1, 2), o_log_scale.transpose(
1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
# compute total duration with adjustment
o_attn_dur = torch.log(1 + torch.sum(attn, -1)) * x_mask
return y_mean, y_log_scale, o_attn_dur
def forward(self, x, x_lengths, y=None, y_lengths=None, attn=None, g=None):
"""
Shapes:
x: [B, T]
x_lenghts: B
y: [B, C, T]
y_lengths: B
g: [B, C] or B
"""
y_max_length = y.size(2)
# norm speaker embeddings
if g is not None:
if self.external_speaker_embedding_dim:
g = F.normalize(g).unsqueeze(-1)
else:
g = F.normalize(self.emb_g(g)).unsqueeze(-1)# [b, h, 1]
# embedding pass
o_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x,
x_lengths,
g=g)
# drop redisual frames wrt num_squeeze and set y_lengths.
y, y_lengths, y_max_length, attn = self.preprocess(
y, y_lengths, y_max_length, None)
# create masks
y_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length),
1).to(x_mask.dtype)
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
# decoder pass
z, logdet = self.decoder(y, y_mask, g=g, reverse=False)
# find the alignment path
with torch.no_grad():
o_scale = torch.exp(-2 * o_log_scale)
logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - o_log_scale,
[1]).unsqueeze(-1) # [b, t, 1]
logp2 = torch.matmul(o_scale.transpose(1, 2), -0.5 *
(z**2)) # [b, t, d] x [b, d, t'] = [b, t, t']
logp3 = torch.matmul((o_mean * o_scale).transpose(1, 2),
z) # [b, t, d] x [b, d, t'] = [b, t, t']
logp4 = torch.sum(-0.5 * (o_mean**2) * o_scale,
[1]).unsqueeze(-1) # [b, t, 1]
logp = logp1 + logp2 + logp3 + logp4 # [b, t, t']
attn = maximum_path(logp,
attn_mask.squeeze(1)).unsqueeze(1).detach()
y_mean, y_log_scale, o_attn_dur = self.compute_outputs(
attn, o_mean, o_log_scale, x_mask)
attn = attn.squeeze(1).permute(0, 2, 1)
return z, logdet, y_mean, y_log_scale, attn, o_dur_log, o_attn_dur
@torch.no_grad()
def inference(self, x, x_lengths, g=None):
if g is not None:
if self.external_speaker_embedding_dim:
g = F.normalize(g).unsqueeze(-1)
else:
g = F.normalize(self.emb_g(g)).unsqueeze(-1) # [b, h]
# embedding pass
o_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x,
x_lengths,
g=g)
# compute output durations
w = (torch.exp(o_dur_log) - 1) * x_mask * self.length_scale
w_ceil = torch.ceil(w)
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = None
# compute masks
y_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length),
1).to(x_mask.dtype)
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
# compute attention mask
attn = generate_path(w_ceil.squeeze(1),
attn_mask.squeeze(1)).unsqueeze(1)
y_mean, y_log_scale, o_attn_dur = self.compute_outputs(
attn, o_mean, o_log_scale, x_mask)
z = (y_mean + torch.exp(y_log_scale) * torch.randn_like(y_mean) *
self.noise_scale) * y_mask
# decoder pass
y, logdet = self.decoder(z, y_mask, g=g, reverse=True)
attn = attn.squeeze(1).permute(0, 2, 1)
return y, logdet, y_mean, y_log_scale, attn, o_dur_log, o_attn_dur
def preprocess(self, y, y_lengths, y_max_length, attn=None):
if y_max_length is not None:
y_max_length = (y_max_length // self.num_squeeze) * self.num_squeeze
y = y[:, :, :y_max_length]
if attn is not None:
attn = attn[:, :, :, :y_max_length]
y_lengths = (y_lengths // self.num_squeeze) * self.num_squeeze
return y, y_lengths, y_max_length, attn
def store_inverse(self):
self.decoder.store_inverse()
def load_checkpoint(self, config, checkpoint_path, eval=False): # pylint: disable=unused-argument, redefined-builtin
state = torch.load(checkpoint_path, map_location=torch.device('cpu'))
self.load_state_dict(state['model'])
if eval:
self.eval()
self.store_inverse()
assert not self.training
|