nazneen commited on
Commit
8aaa52c
·
1 Parent(s): 0a1a74d

model documentation

Browse files
Files changed (1) hide show
  1. README.md +170 -0
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - librispeech_asr
4
+ ---
5
+ # Model Card for wav2vec2-base-superb-sv
6
+
7
+
8
+ # Model Details
9
+
10
+ ## Model Description
11
+
12
+
13
+ - **Developed by:** Anton Lozhkov
14
+ - **Shared by [Optional]:** More information needed
15
+ - **Model type:** More information needed
16
+ - **Language(s) (NLP):** More information needed
17
+ - **License:** More information needed
18
+ - **Related Models:**
19
+ - **Parent Model:** wav2vec2
20
+ - **Resources for more information:**
21
+ - [GitHub Repo](https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20)
22
+ - [Associated Paper](https://arxiv.org/abs/2006.11477)
23
+
24
+
25
+ # Uses
26
+
27
+
28
+ ## Direct Use
29
+
30
+ More information needed
31
+
32
+ ## Downstream Use [Optional]
33
+
34
+ More information needed
35
+
36
+ ## Out-of-Scope Use
37
+
38
+ The model should not be used to intentionally create hostile or alienating environments for people.
39
+
40
+ # Bias, Risks, and Limitations
41
+
42
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
43
+
44
+
45
+ ## Recommendations
46
+
47
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
48
+
49
+
50
+ # Training Details
51
+
52
+ ## Training Data
53
+
54
+ See the [librispeech_asr dataset card](https://huggingface.co/datasets/librispeech_asr)
55
+
56
+ ## Training Procedure
57
+
58
+
59
+ ### Preprocessing
60
+
61
+ More information needed
62
+
63
+ ### Speeds, Sizes, Times
64
+
65
+ More information needed
66
+
67
+ # Evaluation
68
+
69
+
70
+ ## Testing Data, Factors & Metrics
71
+
72
+ ### Testing Data
73
+
74
+ See the [librispeech_asr dataset card](https://huggingface.co/datasets/librispeech_asr)
75
+
76
+ ### Factors
77
+
78
+
79
+ ### Metrics
80
+
81
+ More information needed
82
+ ## Results
83
+
84
+ More information needed
85
+
86
+ # Model Examination
87
+
88
+ More information needed
89
+
90
+ # Environmental Impact
91
+
92
+
93
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
94
+
95
+ - **Hardware Type:** More information needed
96
+ - **Hours used:** More information needed
97
+ - **Cloud Provider:** More information needed
98
+ - **Compute Region:** More information needed
99
+ - **Carbon Emitted:** More information needed
100
+
101
+ # Technical Specifications [optional]
102
+
103
+ ## Model Architecture and Objective
104
+
105
+ More information needed
106
+
107
+ ## Compute Infrastructure
108
+
109
+ More information needed
110
+
111
+ ### Hardware
112
+
113
+ More information needed
114
+
115
+ ### Software
116
+ More information needed
117
+
118
+ # Citation
119
+
120
+
121
+ **BibTeX:**
122
+ ```
123
+ @misc{https://doi.org/10.48550/arxiv.2006.11477,
124
+ doi = {10.48550/ARXIV.2006.11477},
125
+
126
+ url = {https://arxiv.org/abs/2006.11477},
127
+
128
+ author = {Baevski, Alexei and Zhou, Henry and Mohamed, Abdelrahman and Auli, Michael},
129
+
130
+ keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
131
+
132
+ title = {wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations},
133
+
134
+ publisher = {arXiv},
135
+
136
+ ```
137
+
138
+
139
+ # Glossary [optional]
140
+ More information needed
141
+
142
+ # More Information [optional]
143
+
144
+ More information needed
145
+
146
+ # Model Card Authors [optional]
147
+
148
+
149
+ Anton Lozhkov in collaboration with Ezi Ozoani and the Hugging Face team
150
+
151
+ # Model Card Contact
152
+
153
+ More information needed
154
+
155
+ # How to Get Started with the Model
156
+
157
+ Use the code below to get started with the model.
158
+
159
+ <details>
160
+ <summary> Click to expand </summary>
161
+
162
+ ```python
163
+ from transformers import AutoProcessor, AutoModelForAudioXVector
164
+
165
+ processor = AutoProcessor.from_pretrained("anton-l/wav2vec2-base-superb-sv")
166
+
167
+ model = AutoModelForAudioXVector.from_pretrained("anton-l/wav2vec2-base-superb-sv")
168
+
169
+ ```
170
+ </details>