from transformers import PretrainedConfig # ---------------------------- # Define Lumenspark Configuration # ---------------------------- class LumensparkConfig(PretrainedConfig): """ Configuration class for the Lumenspark model. Stores model hyperparameters like sequence length, embedding dimension, number of layers, and others. """ model_type = "lumenspark" def __init__( self, seq_length=768, vocab_size=50257, embed_dim=768, depth=8, heads=12, dropout=1/17, k=384, rank=256, **kwargs ): super().__init__(**kwargs) self.vocab_size = vocab_size self.embed_dim = embed_dim self.depth = depth self.heads = heads self.seq_length = seq_length self.dropout = dropout self.k = k self.rank = rank def to_dict(self): """ Converts the configuration parameters to a dictionary format. Useful for saving the configuration or inspecting model settings. """ output = super().to_dict() output.update({ "vocab_size": self.vocab_size, "embed_dim": self.embed_dim, "depth": self.depth, "heads": self.heads, "seq_length": self.seq_length, "dropout": self.dropout, "k": self.k, "rank": self.rank, }) return output