annazdr commited on
Commit
0384969
1 Parent(s): 5613fdd

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:6413
10
+ - loss:BatchAllTripletLoss
11
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
12
+ datasets: []
13
+ widget:
14
+ - source_sentence: manufacture of charging stations for cars
15
+ sentences:
16
+ - ' education in public and private universities provided at the level of: short-cycle
17
+ studies, usually based on practical learning appropriate to the performance of
18
+ a given profession and preparing students for entry into the labour market or
19
+ other higher education programmes'
20
+ - g
21
+ - Działalność agentów zajmujących się sprzedażą hurtową płodów rolnych, żywych zwierząt,
22
+ surowców dla przemysłu tekstylnego i półproduktów
23
+ - source_sentence: manufacture of carbon and graphite fibres and products (except
24
+ electrodes and electrical applications)
25
+ sentences:
26
+ - educational testing evaluation activities
27
+ - Obróbka i wykończanie produktów z tworzyw sztucznych
28
+ - ' manufacture of all electric motors and transformers: ac, dc and ac/dc'
29
+ - source_sentence: ' retail sale of sports goods, including fishing gear, weapons
30
+ and ammunitions, camping goods, etc'
31
+ sentences:
32
+ - anise, badian and fennel as spice or aromatic plant
33
+ - ' transformers)'
34
+ - retail sale of knitting yarn
35
+ - source_sentence: community and neighbourhood activities
36
+ sentences:
37
+ - manufacture of glass eyes
38
+ - uprawa trzciny cukrowej
39
+ - ' revenue for the intermediation activities can include other sources of income,
40
+ e'
41
+ - source_sentence: dating and other speed networking activities
42
+ sentences:
43
+ - sprzedaż detaliczna prowadzona na straganach i targowiskach ryb, owoców morza,
44
+ produktów z owoców morza i ich przetworów, sprzedaż detaliczna prowadzona na straganach
45
+ i targowiskach alg i wodorostów
46
+ - ' pressure, pushbutton, snap, tumbler switches)'
47
+ - ' dializy, chemioterapia, insulinoterapia, radioterapia'
48
+ pipeline_tag: sentence-similarity
49
+ ---
50
+
51
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
52
+
53
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
54
+
55
+ ## Model Details
56
+
57
+ ### Model Description
58
+ - **Model Type:** Sentence Transformer
59
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
60
+ - **Maximum Sequence Length:** 128 tokens
61
+ - **Output Dimensionality:** 384 tokens
62
+ - **Similarity Function:** Cosine Similarity
63
+ <!-- - **Training Dataset:** Unknown -->
64
+ <!-- - **Language:** Unknown -->
65
+ <!-- - **License:** Unknown -->
66
+
67
+ ### Model Sources
68
+
69
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
70
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
71
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
72
+
73
+ ### Full Model Architecture
74
+
75
+ ```
76
+ SentenceTransformer(
77
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
78
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
79
+ )
80
+ ```
81
+
82
+ ## Usage
83
+
84
+ ### Direct Usage (Sentence Transformers)
85
+
86
+ First install the Sentence Transformers library:
87
+
88
+ ```bash
89
+ pip install -U sentence-transformers
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+ ```python
94
+ from sentence_transformers import SentenceTransformer
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SentenceTransformer("annazdr/nace-pl-v1")
98
+ # Run inference
99
+ sentences = [
100
+ 'dating and other speed networking activities',
101
+ ' pressure, pushbutton, snap, tumbler switches)',
102
+ ' dializy, chemioterapia, insulinoterapia, radioterapia',
103
+ ]
104
+ embeddings = model.encode(sentences)
105
+ print(embeddings.shape)
106
+ # [3, 384]
107
+
108
+ # Get the similarity scores for the embeddings
109
+ similarities = model.similarity(embeddings, embeddings)
110
+ print(similarities.shape)
111
+ # [3, 3]
112
+ ```
113
+
114
+ <!--
115
+ ### Direct Usage (Transformers)
116
+
117
+ <details><summary>Click to see the direct usage in Transformers</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Downstream Usage (Sentence Transformers)
124
+
125
+ You can finetune this model on your own dataset.
126
+
127
+ <details><summary>Click to expand</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Out-of-Scope Use
134
+
135
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
136
+ -->
137
+
138
+ <!--
139
+ ## Bias, Risks and Limitations
140
+
141
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
142
+ -->
143
+
144
+ <!--
145
+ ### Recommendations
146
+
147
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
148
+ -->
149
+
150
+ ## Training Details
151
+
152
+ ### Training Dataset
153
+
154
+ #### Unnamed Dataset
155
+
156
+
157
+ * Size: 6,413 training samples
158
+ * Columns: <code>sentence_0</code> and <code>label</code>
159
+ * Approximate statistics based on the first 1000 samples:
160
+ | | sentence_0 | label |
161
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
162
+ | type | string | int |
163
+ | details | <ul><li>min: 2 tokens</li><li>mean: 17.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~0.10%</li><li>1: ~0.30%</li><li>2: ~0.40%</li><li>3: ~0.20%</li><li>4: ~0.40%</li><li>5: ~0.10%</li><li>6: ~0.30%</li><li>8: ~0.30%</li><li>9: ~0.20%</li><li>10: ~0.10%</li><li>11: ~0.40%</li><li>12: ~0.30%</li><li>13: ~0.10%</li><li>14: ~0.10%</li><li>15: ~0.20%</li><li>16: ~0.10%</li><li>17: ~0.30%</li><li>18: ~0.20%</li><li>19: ~0.20%</li><li>20: ~0.40%</li><li>21: ~0.30%</li><li>22: ~0.10%</li><li>23: ~0.30%</li><li>24: ~0.20%</li><li>25: ~0.20%</li><li>26: ~0.10%</li><li>27: ~0.30%</li><li>28: ~0.30%</li><li>29: ~0.20%</li><li>31: ~0.10%</li><li>34: ~0.20%</li><li>36: ~0.10%</li><li>37: ~0.30%</li><li>39: ~0.20%</li><li>40: ~0.60%</li><li>41: ~0.10%</li><li>42: ~0.30%</li><li>43: ~0.20%</li><li>44: ~0.60%</li><li>45: ~0.50%</li><li>46: ~0.20%</li><li>47: ~0.10%</li><li>48: ~0.10%</li><li>49: ~0.20%</li><li>50: ~0.20%</li><li>51: ~0.20%</li><li>52: ~0.20%</li><li>53: ~0.60%</li><li>54: ~0.10%</li><li>55: ~0.20%</li><li>57: ~0.20%</li><li>58: ~0.10%</li><li>59: ~0.10%</li><li>60: ~0.20%</li><li>62: ~0.10%</li><li>63: ~0.20%</li><li>64: ~0.80%</li><li>65: ~0.60%</li><li>66: ~0.70%</li><li>67: ~0.10%</li><li>68: ~0.20%</li><li>69: ~0.30%</li><li>70: ~0.70%</li><li>72: ~0.20%</li><li>73: ~0.90%</li><li>74: ~0.40%</li><li>75: ~0.10%</li><li>76: ~0.40%</li><li>77: ~0.10%</li><li>78: ~0.30%</li><li>79: ~0.20%</li><li>81: ~0.10%</li><li>82: ~0.60%</li><li>83: ~0.20%</li><li>85: ~0.20%</li><li>87: ~0.30%</li><li>88: ~0.20%</li><li>89: ~0.10%</li><li>90: ~0.50%</li><li>95: ~0.20%</li><li>96: ~0.10%</li><li>97: ~0.40%</li><li>98: ~0.30%</li><li>99: ~0.70%</li><li>100: ~0.60%</li><li>102: ~1.00%</li><li>103: ~0.30%</li><li>104: ~0.10%</li><li>106: ~0.20%</li><li>107: ~0.10%</li><li>108: ~0.20%</li><li>109: ~0.20%</li><li>110: ~0.30%</li><li>112: ~0.10%</li><li>115: ~0.10%</li><li>116: ~0.30%</li><li>120: ~0.40%</li><li>122: ~0.20%</li><li>123: ~0.20%</li><li>124: ~0.10%</li><li>125: ~0.30%</li><li>126: ~0.50%</li><li>127: ~0.40%</li><li>128: ~0.70%</li><li>130: ~0.10%</li><li>132: ~0.10%</li><li>135: ~0.20%</li><li>136: ~0.10%</li><li>140: ~0.10%</li><li>141: ~0.10%</li><li>143: ~0.10%</li><li>145: ~0.10%</li><li>148: ~0.30%</li><li>149: ~0.20%</li><li>150: ~0.10%</li><li>151: ~0.40%</li><li>152: ~0.40%</li><li>153: ~0.20%</li><li>154: ~0.50%</li><li>158: ~0.20%</li><li>159: ~0.10%</li><li>161: ~0.10%</li><li>163: ~0.10%</li><li>164: ~0.10%</li><li>167: ~0.10%</li><li>168: ~0.20%</li><li>169: ~0.10%</li><li>171: ~0.10%</li><li>172: ~0.10%</li><li>173: ~0.10%</li><li>179: ~0.10%</li><li>181: ~0.40%</li><li>182: ~0.50%</li><li>183: ~0.20%</li><li>184: ~0.10%</li><li>185: ~0.30%</li><li>186: ~0.20%</li><li>188: ~0.10%</li><li>189: ~0.40%</li><li>190: ~0.20%</li><li>191: ~0.20%</li><li>192: ~0.60%</li><li>193: ~0.20%</li><li>194: ~0.30%</li><li>195: ~0.40%</li><li>196: ~0.10%</li><li>198: ~0.10%</li><li>199: ~0.40%</li><li>200: ~0.20%</li><li>201: ~0.20%</li><li>202: ~0.30%</li><li>206: ~0.10%</li><li>209: ~0.10%</li><li>210: ~0.10%</li><li>211: ~0.20%</li><li>212: ~0.10%</li><li>213: ~0.10%</li><li>221: ~0.20%</li><li>222: ~0.10%</li><li>224: ~0.20%</li><li>227: ~0.10%</li><li>228: ~0.10%</li><li>229: ~0.40%</li><li>231: ~0.30%</li><li>233: ~0.10%</li><li>235: ~0.10%</li><li>236: ~0.40%</li><li>237: ~0.30%</li><li>238: ~0.10%</li><li>241: ~0.20%</li><li>242: ~0.30%</li><li>243: ~0.60%</li><li>244: ~0.30%</li><li>245: ~0.10%</li><li>246: ~0.20%</li><li>247: ~0.20%</li><li>248: ~0.10%</li><li>249: ~0.10%</li><li>250: ~0.20%</li><li>254: ~0.30%</li><li>255: ~0.10%</li><li>258: ~0.10%</li><li>259: ~0.10%</li><li>260: ~0.50%</li><li>261: ~0.10%</li><li>262: ~0.20%</li><li>264: ~0.20%</li><li>265: ~0.20%</li><li>270: ~0.20%</li><li>272: ~0.10%</li><li>273: ~0.10%</li><li>274: ~0.20%</li><li>276: ~0.10%</li><li>277: ~0.30%</li><li>279: ~0.10%</li><li>280: ~0.10%</li><li>283: ~0.10%</li><li>284: ~0.10%</li><li>285: ~0.40%</li><li>286: ~0.20%</li><li>287: ~0.20%</li><li>288: ~0.10%</li><li>289: ~0.40%</li><li>291: ~0.10%</li><li>292: ~0.40%</li><li>293: ~0.40%</li><li>294: ~0.10%</li><li>295: ~0.30%</li><li>296: ~0.30%</li><li>297: ~0.20%</li><li>298: ~0.20%</li><li>300: ~0.20%</li><li>302: ~0.20%</li><li>303: ~0.30%</li><li>304: ~0.20%</li><li>308: ~0.30%</li><li>310: ~0.30%</li><li>311: ~0.50%</li><li>312: ~0.20%</li><li>313: ~0.20%</li><li>314: ~0.30%</li><li>315: ~0.10%</li><li>316: ~0.20%</li><li>317: ~0.10%</li><li>319: ~0.20%</li><li>322: ~0.10%</li><li>323: ~0.10%</li><li>324: ~0.30%</li><li>325: ~0.30%</li><li>328: ~0.20%</li><li>329: ~0.30%</li><li>330: ~0.10%</li><li>332: ~0.20%</li><li>333: ~0.30%</li><li>335: ~0.20%</li><li>336: ~0.60%</li><li>337: ~0.40%</li><li>338: ~0.10%</li><li>339: ~0.10%</li><li>340: ~0.10%</li><li>341: ~0.10%</li><li>342: ~0.10%</li><li>344: ~0.20%</li><li>346: ~0.10%</li><li>347: ~0.30%</li><li>348: ~0.10%</li><li>349: ~0.30%</li><li>350: ~0.20%</li><li>351: ~0.10%</li><li>352: ~0.40%</li><li>353: ~0.30%</li><li>354: ~0.20%</li><li>356: ~0.20%</li><li>357: ~0.40%</li><li>358: ~0.40%</li><li>359: ~0.40%</li><li>360: ~0.20%</li><li>361: ~0.40%</li><li>362: ~0.20%</li><li>363: ~0.10%</li><li>366: ~0.10%</li><li>367: ~0.10%</li><li>368: ~0.70%</li><li>369: ~0.20%</li><li>370: ~0.30%</li><li>372: ~0.30%</li><li>373: ~0.20%</li><li>374: ~0.40%</li><li>375: ~0.10%</li><li>376: ~0.10%</li><li>377: ~0.10%</li><li>379: ~0.20%</li><li>381: ~0.30%</li><li>383: ~0.40%</li><li>384: ~0.20%</li><li>385: ~0.20%</li><li>386: ~0.20%</li><li>387: ~0.20%</li><li>389: ~0.10%</li><li>390: ~0.30%</li><li>391: ~0.20%</li><li>392: ~0.20%</li><li>393: ~0.20%</li><li>395: ~0.10%</li><li>397: ~0.40%</li><li>398: ~0.20%</li><li>399: ~0.30%</li><li>400: ~0.40%</li><li>402: ~0.10%</li><li>407: ~0.10%</li><li>408: ~0.20%</li><li>409: ~0.30%</li><li>411: ~0.20%</li><li>412: ~0.20%</li><li>414: ~0.20%</li><li>415: ~0.20%</li><li>416: ~0.10%</li><li>417: ~0.30%</li><li>418: ~0.10%</li><li>420: ~0.20%</li><li>422: ~0.50%</li><li>423: ~0.10%</li><li>425: ~0.40%</li><li>426: ~0.10%</li><li>427: ~0.10%</li><li>428: ~0.40%</li><li>429: ~0.20%</li><li>430: ~0.10%</li><li>431: ~0.10%</li><li>432: ~0.10%</li><li>433: ~0.20%</li><li>434: ~0.30%</li><li>435: ~0.20%</li><li>436: ~0.40%</li><li>437: ~0.10%</li><li>438: ~0.40%</li><li>440: ~0.80%</li><li>441: ~0.20%</li><li>442: ~0.50%</li><li>443: ~0.20%</li><li>444: ~0.30%</li><li>445: ~0.30%</li><li>446: ~0.10%</li><li>447: ~0.20%</li><li>450: ~0.30%</li><li>451: ~0.20%</li><li>452: ~0.20%</li><li>453: ~0.10%</li><li>454: ~0.20%</li><li>455: ~0.30%</li><li>456: ~0.10%</li><li>457: ~0.10%</li><li>458: ~0.20%</li><li>459: ~0.20%</li><li>460: ~0.10%</li><li>461: ~0.10%</li><li>462: ~0.10%</li><li>463: ~0.40%</li><li>464: ~0.30%</li><li>467: ~0.10%</li><li>469: ~0.10%</li><li>470: ~0.10%</li><li>472: ~0.10%</li><li>475: ~0.50%</li><li>476: ~0.30%</li><li>478: ~0.10%</li><li>479: ~0.20%</li><li>480: ~0.10%</li><li>482: ~0.30%</li><li>483: ~0.50%</li><li>484: ~0.30%</li><li>485: ~0.40%</li><li>486: ~0.20%</li><li>487: ~0.20%</li><li>489: ~0.10%</li><li>490: ~0.20%</li><li>491: ~0.10%</li><li>492: ~0.40%</li><li>493: ~0.40%</li><li>495: ~0.10%</li><li>497: ~0.10%</li><li>498: ~0.10%</li><li>499: ~0.30%</li><li>501: ~0.20%</li><li>502: ~0.20%</li><li>503: ~0.10%</li><li>504: ~0.30%</li><li>505: ~0.10%</li><li>506: ~0.10%</li><li>507: ~0.10%</li><li>508: ~0.20%</li><li>509: ~0.10%</li><li>510: ~0.10%</li><li>511: ~0.10%</li><li>512: ~0.50%</li><li>514: ~0.20%</li><li>517: ~0.40%</li><li>518: ~0.10%</li><li>519: ~0.60%</li><li>520: ~0.90%</li><li>521: ~0.60%</li><li>522: ~0.10%</li><li>523: ~0.10%</li><li>524: ~0.10%</li><li>525: ~0.10%</li><li>526: ~0.10%</li><li>527: ~0.10%</li><li>528: ~0.30%</li><li>529: ~0.40%</li><li>530: ~0.60%</li><li>531: ~0.20%</li><li>532: ~0.10%</li><li>533: ~0.30%</li><li>535: ~0.50%</li><li>537: ~0.20%</li><li>540: ~0.10%</li><li>541: ~0.10%</li><li>542: ~0.20%</li><li>543: ~0.30%</li><li>544: ~0.20%</li><li>545: ~0.50%</li><li>546: ~0.30%</li><li>547: ~0.10%</li><li>548: ~0.50%</li><li>549: ~0.10%</li><li>550: ~0.30%</li><li>551: ~0.30%</li><li>552: ~0.10%</li><li>554: ~0.60%</li><li>555: ~0.20%</li><li>556: ~0.10%</li><li>557: ~0.10%</li><li>560: ~0.20%</li><li>561: ~0.10%</li><li>563: ~0.20%</li><li>564: ~0.20%</li><li>565: ~0.20%</li><li>567: ~0.10%</li><li>568: ~0.20%</li><li>570: ~0.20%</li><li>571: ~0.10%</li><li>572: ~0.20%</li><li>573: ~0.20%</li><li>576: ~0.20%</li><li>579: ~0.10%</li></ul> |
164
+ * Samples:
165
+ | sentence_0 | label |
166
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
167
+ | <code>retail sale of wooden, cork and wickerwork goods</code> | <code>202</code> |
168
+ | <code>e</code> | <code>298</code> |
169
+ | <code>produkcję maszyn do obróbki miękkiej gumy lub tworzyw sztucznych oraz wytwarzania wyrobów z tych materiałów: wytłaczarek, maszyn do formowania, maszyn do produkcji lub bieżnikowania opon pneumatycznych oraz pozostałych maszyn do produkcji wyrobów z gumy lub tworzyw sztucznych</code> | <code>79</code> |
170
+ * Loss: [<code>BatchAllTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
171
+
172
+ ### Training Hyperparameters
173
+ #### Non-Default Hyperparameters
174
+
175
+ - `per_device_train_batch_size`: 256
176
+ - `per_device_eval_batch_size`: 256
177
+ - `num_train_epochs`: 4
178
+ - `multi_dataset_batch_sampler`: round_robin
179
+
180
+ #### All Hyperparameters
181
+ <details><summary>Click to expand</summary>
182
+
183
+ - `overwrite_output_dir`: False
184
+ - `do_predict`: False
185
+ - `eval_strategy`: no
186
+ - `prediction_loss_only`: True
187
+ - `per_device_train_batch_size`: 256
188
+ - `per_device_eval_batch_size`: 256
189
+ - `per_gpu_train_batch_size`: None
190
+ - `per_gpu_eval_batch_size`: None
191
+ - `gradient_accumulation_steps`: 1
192
+ - `eval_accumulation_steps`: None
193
+ - `learning_rate`: 5e-05
194
+ - `weight_decay`: 0.0
195
+ - `adam_beta1`: 0.9
196
+ - `adam_beta2`: 0.999
197
+ - `adam_epsilon`: 1e-08
198
+ - `max_grad_norm`: 1
199
+ - `num_train_epochs`: 4
200
+ - `max_steps`: -1
201
+ - `lr_scheduler_type`: linear
202
+ - `lr_scheduler_kwargs`: {}
203
+ - `warmup_ratio`: 0.0
204
+ - `warmup_steps`: 0
205
+ - `log_level`: passive
206
+ - `log_level_replica`: warning
207
+ - `log_on_each_node`: True
208
+ - `logging_nan_inf_filter`: True
209
+ - `save_safetensors`: True
210
+ - `save_on_each_node`: False
211
+ - `save_only_model`: False
212
+ - `restore_callback_states_from_checkpoint`: False
213
+ - `no_cuda`: False
214
+ - `use_cpu`: False
215
+ - `use_mps_device`: False
216
+ - `seed`: 42
217
+ - `data_seed`: None
218
+ - `jit_mode_eval`: False
219
+ - `use_ipex`: False
220
+ - `bf16`: False
221
+ - `fp16`: False
222
+ - `fp16_opt_level`: O1
223
+ - `half_precision_backend`: auto
224
+ - `bf16_full_eval`: False
225
+ - `fp16_full_eval`: False
226
+ - `tf32`: None
227
+ - `local_rank`: 0
228
+ - `ddp_backend`: None
229
+ - `tpu_num_cores`: None
230
+ - `tpu_metrics_debug`: False
231
+ - `debug`: []
232
+ - `dataloader_drop_last`: False
233
+ - `dataloader_num_workers`: 0
234
+ - `dataloader_prefetch_factor`: None
235
+ - `past_index`: -1
236
+ - `disable_tqdm`: False
237
+ - `remove_unused_columns`: True
238
+ - `label_names`: None
239
+ - `load_best_model_at_end`: False
240
+ - `ignore_data_skip`: False
241
+ - `fsdp`: []
242
+ - `fsdp_min_num_params`: 0
243
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
244
+ - `fsdp_transformer_layer_cls_to_wrap`: None
245
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
246
+ - `deepspeed`: None
247
+ - `label_smoothing_factor`: 0.0
248
+ - `optim`: adamw_torch
249
+ - `optim_args`: None
250
+ - `adafactor`: False
251
+ - `group_by_length`: False
252
+ - `length_column_name`: length
253
+ - `ddp_find_unused_parameters`: None
254
+ - `ddp_bucket_cap_mb`: None
255
+ - `ddp_broadcast_buffers`: False
256
+ - `dataloader_pin_memory`: True
257
+ - `dataloader_persistent_workers`: False
258
+ - `skip_memory_metrics`: True
259
+ - `use_legacy_prediction_loop`: False
260
+ - `push_to_hub`: False
261
+ - `resume_from_checkpoint`: None
262
+ - `hub_model_id`: None
263
+ - `hub_strategy`: every_save
264
+ - `hub_private_repo`: False
265
+ - `hub_always_push`: False
266
+ - `gradient_checkpointing`: False
267
+ - `gradient_checkpointing_kwargs`: None
268
+ - `include_inputs_for_metrics`: False
269
+ - `eval_do_concat_batches`: True
270
+ - `fp16_backend`: auto
271
+ - `push_to_hub_model_id`: None
272
+ - `push_to_hub_organization`: None
273
+ - `mp_parameters`:
274
+ - `auto_find_batch_size`: False
275
+ - `full_determinism`: False
276
+ - `torchdynamo`: None
277
+ - `ray_scope`: last
278
+ - `ddp_timeout`: 1800
279
+ - `torch_compile`: False
280
+ - `torch_compile_backend`: None
281
+ - `torch_compile_mode`: None
282
+ - `dispatch_batches`: None
283
+ - `split_batches`: None
284
+ - `include_tokens_per_second`: False
285
+ - `include_num_input_tokens_seen`: False
286
+ - `neftune_noise_alpha`: None
287
+ - `optim_target_modules`: None
288
+ - `batch_eval_metrics`: False
289
+ - `batch_sampler`: batch_sampler
290
+ - `multi_dataset_batch_sampler`: round_robin
291
+
292
+ </details>
293
+
294
+ ### Framework Versions
295
+ - Python: 3.10.12
296
+ - Sentence Transformers: 3.0.1
297
+ - Transformers: 4.41.2
298
+ - PyTorch: 2.3.0+cu121
299
+ - Accelerate: 0.31.0
300
+ - Datasets: 2.20.0
301
+ - Tokenizers: 0.19.1
302
+
303
+ ## Citation
304
+
305
+ ### BibTeX
306
+
307
+ #### Sentence Transformers
308
+ ```bibtex
309
+ @inproceedings{reimers-2019-sentence-bert,
310
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
311
+ author = "Reimers, Nils and Gurevych, Iryna",
312
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
313
+ month = "11",
314
+ year = "2019",
315
+ publisher = "Association for Computational Linguistics",
316
+ url = "https://arxiv.org/abs/1908.10084",
317
+ }
318
+ ```
319
+
320
+ #### BatchAllTripletLoss
321
+ ```bibtex
322
+ @misc{hermans2017defense,
323
+ title={In Defense of the Triplet Loss for Person Re-Identification},
324
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
325
+ year={2017},
326
+ eprint={1703.07737},
327
+ archivePrefix={arXiv},
328
+ primaryClass={cs.CV}
329
+ }
330
+ ```
331
+
332
+ <!--
333
+ ## Glossary
334
+
335
+ *Clearly define terms in order to be accessible across audiences.*
336
+ -->
337
+
338
+ <!--
339
+ ## Model Card Authors
340
+
341
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
342
+ -->
343
+
344
+ <!--
345
+ ## Model Card Contact
346
+
347
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
348
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4deb020e3adbe939f38aaf181b2a0d6941d11cfc1ecc5c64f960bc95b1f1c4d6
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260