File size: 56,626 Bytes
f5f5c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2231
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The fact that no customer noticed this major migration to Amazon
    S3 Glacier Instant Retrieval was a big win for us. It was a seamless experience
    for end users, and we had no production issues during the entire migration. 
    Contact Sales Greater than 99. 99% Outcome | Gaining Insights on AWS to Prioritize
    Business Needs 한국어 Snap migrated more than 2 exabytes of data—roughly equivalent
    to 1. 5 trillion media files—seamlessly to Amazon S3 Glacier Instant Retrieval
    from Amazon S3 Standard-IA. “The fact that no customer noticed this major migration
    to Amazon S3 Glacier Instant Retrieval was a big win for us,” says Manoharan.
    “It was a seamless experience for Snapchatters, and we had no production issues
    during the entire migration.  As a result of the migration, the company saved
    tens of millions of dollars on storage. Snap has configured Amazon S3 in 20 AWS
    Regions around the world so that customers anywhere can retrieve data in milliseconds.
    The AWS Global Infrastructure is the most secure, extensive, and reliable Global
    Cloud Infrastructure for a business’s applications. The global reach of AWS lets
    Snap store media closer to the place where Snapchatters are creating it for optimal
    performance. Snap is also able to deliver content efficiently using Amazon CloudFront,
    a content delivery network service built for high performance, security, and availability.
    “We’ve been able to off-load all of the regionalization work and costs to AWS
    so that we can focus on developing new features,” says Manoharan. As a result,
    Snapchat continues to meet its quarterly cost-optimization goals. Overview | Opportunity
    | Solution | Outcome | AWS Services Used 2 exabytes Amazon Simple Storage Service
    (Amazon S3) is an object storage service offering industry-leading scalability,
    data availability, security, and performance.  In 2016, Snap migrated its data
    to AWS. “We chose to migrate to AWS because of its global reach, excellent performance,
    and competitive pricing that, in turn, gave us the ability to reinvest in our
    business,” says Vijay Manoharan, manager of the media delivery platform team at
    Snap. Amazon S3 Glacier Instant Retrieval is an archive storage class that delivers
    the lowest-cost storage for long-lived data that is rarely accessed and requires
    retrieval in milliseconds. AWS Services Used In 2017, Snap migrated one of the
    app’s most central features—Snapchat Stories—to Amazon DynamoDB, a fully managed,
    serverless, NoSQL database designed to run high-performance applications at virtually
    any scale. Using Amazon DynamoDB, the company experienced greater than 99.
  sentences:
  - How did Snap save tens of millions of dollars on storage as a result of migrating
    to Amazon S3 Glacier Instant Retrieval from Amazon S3 Standard-IA?
  - How has Panasonic Avionics Corporation leveraged Amazon Aurora MySQL-Compatible
    Edition and other AWS services to improve the reliability and scalability of its
    databases for in-flight entertainment and communications systems?
  - How does Ground Truth Plus ensure the quality of image and video captions generated
    by human annotators?
- source_sentence:  中文 (繁體) Bahasa Indonesia Contact Sales Ρусский Customer Stories
    / Software & Internet عربي 中文 (简体) Organizations of all sizes across all industries
    are transforming their businesses and delivering on their missions every day using
    AWS. Contact our experts and start your own AWS journey today. Outcome | Expanding
    Intelligent Features of Virtual Care Amazon Transcribe is an automatic speech
    recognition service that makes it easy to add speech to text capabilities to any
    application. Learn more » Learn more » It is critical that video visits are secure,
    responsive, and reliable. Using AWS helps us provide all this in a performant
    and scalable way. " Overview With the Amazon Chime SDK, builders can easily add
    real-time voice, video, and messaging powered by machine learning into their applications.
    Get Started Beyond traditional use cases, Salesforce is adding capabilities in
    medication-therapy management, connectivity for care coordinators, and other approaches
    for patient engagement. The company is developing a new feature that will expand
    its support of Virtual Care sessions to multiple participants, instead of just
    clinician and patient. This will facilitate care-team coordination with multiple
    parties in a single meeting. Using AWS, Salesforce circumvented the heavy lifting
    that would have been required to build and maintain a video-calling solution from
    scratch. Patients self-schedule virtual appointments, coordinate previsit activities,
    and conduct virtual visits in a HIPAA-compliant environment. A patient’s appointment
    request gets routed to Amazon Chime SDK. Clinicians then review a patient’s intake
    form and correlate the patient to a Virtual Care session using Amazon Chime SDK
    messaging, which connects providers and patients with secure, scalable messaging
    in their web and mobile applications. The Amazon Chime SDK control plane sends
    event notifications through a default event bus to Amazon EventBridge, a serverless
    event bus that helps organizations receive, filter, transform, route, and deliver
    events. Healthcare professionals deliver care over the internet in near real time,
    which has significantly reduced no-shows for appointments. “Using Amazon Chime
    SDK, we don’t have to worry about the mechanics of the video call,” Daftari says.
    “We can focus on features and functions that help differentiate our product in
    the marketplace, while also significantly improving our speed to launch. ” Salesforce
    further supports accessibility through embedding closed-captioning of video calls
    using Amazon Chime SDK live transcription. Amazon Chime SDK sends live audio streams
    to Amazon Transcribe, which automatically converts speech to text. Salesforce
    Health Cloud customers can use the live transcription capability to display subtitles,
    create meeting transcripts, or analyze content.
  sentences:
  - How did DB Energie use Amazon SageMaker and AWS to enhance the sustainability
    and reliability of its power grid operations?
  - How did Provectus assist Earth.com in enhancing the AI-powered image recognition
    capabilities of EarthSnap and reducing engineering heavy lifting through the implementation
    of end-to-end ML pipelines and managed MLOps platform?
  - How does Salesforce use AWS services such as Amazon Chime SDK and Amazon Transcribe
    to enhance their Virtual Care sessions for healthcare professionals and patients?
- source_sentence: It’s been a great success. ” Overview 93% Validate technical skills
    and cloud expertise to grow your career and business. Learn more » Amazon Web
    Services (AWS) Education Programs collaborate with education institutions and
    the public sector to provide access for individuals to develop cloud computing
    and digital skills. To help graduates boost their employability, Staffordshire
    University worked with the AWS team to introduce cloud computing skills training
    and add cloud courses to its credit-bearing computer science modules. Staffordshire
    University offers courses through AWS Academy, which empowers higher education
    institutions to prepare students for industry-recognized certifications and careers.
    Since the university added AWS Academy courses to its curriculum in 2017, several
    hundred students have participated. Of those students, 93 percent have achieved
    employment within 6 months of graduation. Empowered students Türkçe Solution |
    Learning by Doing Using AWS Learner Labs English With AWS Academy, our students
    love that they’re not just taking theory lessons. They get to work in actual environments
    with real AWS tools. ” Next up, Staffordshire University is expanding on the success
    of its cloud courses by launching additional programs of study developed in collaboration
    with the AWS team. Staffordshire University and the AWS team designed these programs
    by "Working Backwards"  an Amazon process that encourages companies to brainstorm
    solutions by using a customer challenge as the starting point  from the cloud
    skills employers are currently seeking in the United Kingdom and across the global
    labor market. One of these programs, which launches in September 2022, is a cloud
    computing course that features both cloud computing and cybersecurity modules
    and will offer students more opportunities to discover what’s possible with the
    AWS Cloud. “What we want to encourage is for students to play with AWS services
    as well as build confidence with the tools,” says Dr. Champion. to learn remotely
    using any hardware and earn AWS Certifications Staffordshire University added
    cloud computing skills training to its curriculum using AWS Education Programs,
    helping 93 percent of participants find employment within 6 months of graduation.
    covering cloud skills AWS Certification during the AWS Educate University Challenge
    Deutsch of graduates find jobs within 6 months Tiếng Việt Italiano ไทย Outcome
    | Developing New Cloud Coursework About Staffordshire University Staffordshire
    University is a public research university in Staffordshire, England. Founded
    in 1914, the university serves over 15,000 students across three schools and four
    campuses. The United Kingdom has experienced a technology boom in recent years,
    with technology funding tripling in the first 6 months of 2021 compared to the
    same period in 2020. In particular, employers need professionals with cloud computing
    skills ranging from cloud development to machine learning and data analytics.
    To meet demand, Staffordshire University offers students their choice of six AWS
    courses covering these key skills and more.
  sentences:
  - How has the collaboration between Staffordshire University and the AWS team impacted
    the employability of graduates in the field of cloud computing?
  - How can the confidence scores be used to verify the accuracy of sentiment assignments
    in the sentiment_results_final table, especially for any dubious sentiment assignments?
  - How did migrating to AWS help Travian Games improve the stability and reliability
    of their game servers, and what impact did this have on their players' experience?
- source_sentence: Contact our experts and start your own AWS journey today. customer
    and agent experience 2022 Overview WaFd Bank Transforms Contact Centers Using
    Conversational AI on AWS Customer Stories / Financial Services WaFd uses a data
    lake on AWS to store and analyze data from phone and chatbot conversations. “We’re
    getting incredible data from AWS through the conversational logs,” says Hubbard.
    “That has given us insights into what our customers are asking for so that we
    can add more self-service functionality.  The data also gives WaFd more insight
    into call volumes, so the call center can better manage staff schedules. Opportunity
    | Using Amazon Lex to Implement an AI-Powered Contact Center Solution Türkçe English
    WaFd is a US retail and commercial bank with over 200 branches in eight states.
    In 2019, WaFd founded subsidiary Pike Street Labs, a fintech startup, to drive
    client-facing digital innovation for the bank. “Banks need to meet customers’
    digital expectations,” says Dustin Hubbard, chief technology officer at WaFd Bank
    and Pike Street Labs. “Every year, customers expect more innovation because that’s
    what they see from new entrants or in other markets.  Pike Street Labs redesigned
    WaFd’s online banking solution to provide personalized customer experiences and
    began tackling the bank’s customer care center. The company’s previous contact
    center solution used dated technology with limited features spread across disparate
    systems. This led to long wait times for customers and frustration for agents,
    who had to answer incoming calls without prior knowledge of what the customer
    needed. Agents also bore the burden of identifying fraudulent calls. WaFd needed
    a solution to improve both the customer and agent experiences. Previously, WaFd
    used two different systems in its customer care center to manage its voice and
    chat-based customer interactions, with no way for one system to recognize that
    an agent was busy on the other. Chat messages remained unanswered because agents
    would forget to sign in to the chat system. The company implemented chatbots and
    voice bots powered by Amazon Lex. Now, the call and chat systems are interoperable,
    and chats can be escalated to agent assisted calls when needed. When a call gets
    passed to an agent, the system also passes the full chat record and an analysis
    of the customer’s tone so that the agent is prepared to address the client’s needs
    and be empathetic toward the caller’s sentiment. WaFd worked with the AWS and
    Talkdesk teams to create and launch its new contact center solution in July 2022.
  sentences:
  - How did Yellow Class optimize its video files and improve performance using AWS
    services such as AWS Elemental MediaConvert?
  - How has FanDuel ensured the redundancy and reliability of its live video streams
    through the use of AWS Elemental MediaConnect and AWS Elemental MediaLive?
  - How did WaFd Bank use data from phone and chatbot conversations stored in a data
    lake on AWS to improve self-service functionality and better manage call center
    staff schedules?
- source_sentence: 'Alternatively, you can run the inference via code. Here is one
    example written in Python, using the requests library: import requests url = "https://<YOUR_API_GATEWAY_ENDPOINT_ID>.
    execute-api. <YOUR_ENDPOINT_REGION>. amazonaws. com/prod/question?question=\"What
    is the color of my car now?\"&context=\"My car used to be blue but I painted red\""
    response = requests. request("GET", url, headers=headers, data=payload) print(response.
    text) The code outputs a string similar to the following: ''{"score":0. 6947233080863953,"start":38,"end":41,"answer":"red"}''
    If you are interested in knowing more about deploying Generative AI and large
    language models on AWS, check out here: Deploy Serverless Generative AI on AWS
    Lambda with OpenLLaMa Deploy large language models on AWS Inferentia2 using large
    model inference containers Clean up Inside the root directory of your repository,
    run the following code to clean up your resources: make destroy Conclusion In
    this post, we introduced how you can use Lambda to deploy your trained ML model
    using your preferred web application framework, such as FastAPI. We provided a
    detailed code repository that you can deploy, and you retain the flexibility of
    switching to whichever trained model artifacts you process. The performance can
    depend on how you implement and deploy the model. You are welcome to try it out
    yourself, and we’re excited to hear your feedback! About the Authors Tingyi Li
    is an Enterprise Solutions Architect from AWS based out in Stockholm, Sweden supporting
    the Nordics customers. She enjoys helping customers with the architecture, design,
    and development of cloud-optimized infrastructure solutions. She is specialized
    in AI and Machine Learning and is interested in empowering customers with intelligence
    in their AI/ML applications. In her spare time, she is also a part-time illustrator
    who writes novels and plays the piano. Demir Catovic is a Machine Learning Engineer
    from AWS based in Zurich, Switzerland. He engages with customers and helps them
    implement scalable and fully-functional ML applications. He is passionate about
    building and productionizing machine learning applications for customers and is
    always keen to explore around new trends and cutting-edge technologies in the
    AI/ML world. TAGS: Generative AI , Natural Language Processing Comments View Comments
    Resources Getting Started What''s New Blog Topics Amazon Comprehend Amazon Kendra
    Amazon Lex Amazon Polly Amazon Rekognition Amazon SageMaker Amazon Textract Follow
    Twitter Facebook LinkedIn Twitch Email Updates.'
  sentences:
  - How did ALTBalaji use AWS Elemental MediaLive to handle a tenfold increase in
    viewership during the live streaming of Lock Upp, and what insights did they gain
    from this experience?
  - How has PayEye been able to accelerate their development process and enter the
    production phase within a few months using AWS services, and what impact has this
    had on their recruitment efforts and team focus?
  - How can Lambda be used to deploy trained ML models using a preferred web application
    framework?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.5120967741935484
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8266129032258065
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9233870967741935
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9637096774193549
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5120967741935484
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2755376344086021
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18467741935483872
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09637096774193549
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5120967741935484
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8266129032258065
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9233870967741935
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9637096774193549
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7538879073840729
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6844038018433181
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6858592666542238
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.532258064516129
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8225806451612904
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9193548387096774
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.967741935483871
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.532258064516129
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27419354838709675
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18387096774193548
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09677419354838711
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.532258064516129
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8225806451612904
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9193548387096774
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.967741935483871
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7596718979684643
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6912602406554021
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6924236134719179
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.5241935483870968
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8225806451612904
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9193548387096774
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9596774193548387
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5241935483870968
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27419354838709675
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1838709677419355
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0959677419354839
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5241935483870968
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8225806451612904
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9193548387096774
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9596774193548387
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7527772429981233
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6846406169994881
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6862769216923534
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.4959677419354839
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7903225806451613
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8911290322580645
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9556451612903226
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4959677419354839
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26344086021505375
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17822580645161293
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09556451612903227
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4959677419354839
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7903225806451613
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8911290322580645
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9556451612903226
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.73375586078758
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6613495263696876
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6630698645438532
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.4475806451612903
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7661290322580645
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8790322580645161
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9475806451612904
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4475806451612903
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2553763440860215
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17580645161290326
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09475806451612903
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4475806451612903
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7661290322580645
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8790322580645161
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9475806451612904
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7052651530890945
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6260768689196109
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6277483838406475
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("anishareddyalla/bge-base-matryoshka-aws-casestudies")
# Run inference
sentences = [
    'Alternatively, you can run the inference via code. Here is one example written in Python, using the requests library: import requests url = "https://<YOUR_API_GATEWAY_ENDPOINT_ID>. execute-api. <YOUR_ENDPOINT_REGION>. amazonaws. com/prod/question?question=\\"What is the color of my car now?\\"&context=\\"My car used to be blue but I painted red\\"" response = requests. request("GET", url, headers=headers, data=payload) print(response. text) The code outputs a string similar to the following: \'{"score":0. 6947233080863953,"start":38,"end":41,"answer":"red"}\' If you are interested in knowing more about deploying Generative AI and large language models on AWS, check out here: Deploy Serverless Generative AI on AWS Lambda with OpenLLaMa Deploy large language models on AWS Inferentia2 using large model inference containers Clean up Inside the root directory of your repository, run the following code to clean up your resources: make destroy Conclusion In this post, we introduced how you can use Lambda to deploy your trained ML model using your preferred web application framework, such as FastAPI. We provided a detailed code repository that you can deploy, and you retain the flexibility of switching to whichever trained model artifacts you process. The performance can depend on how you implement and deploy the model. You are welcome to try it out yourself, and we’re excited to hear your feedback! About the Authors Tingyi Li is an Enterprise Solutions Architect from AWS based out in Stockholm, Sweden supporting the Nordics customers. She enjoys helping customers with the architecture, design, and development of cloud-optimized infrastructure solutions. She is specialized in AI and Machine Learning and is interested in empowering customers with intelligence in their AI/ML applications. In her spare time, she is also a part-time illustrator who writes novels and plays the piano. Demir Catovic is a Machine Learning Engineer from AWS based in Zurich, Switzerland. He engages with customers and helps them implement scalable and fully-functional ML applications. He is passionate about building and productionizing machine learning applications for customers and is always keen to explore around new trends and cutting-edge technologies in the AI/ML world. TAGS: Generative AI , Natural Language Processing Comments View Comments Resources Getting Started What\'s New Blog Topics Amazon Comprehend Amazon Kendra Amazon Lex Amazon Polly Amazon Rekognition Amazon SageMaker Amazon Textract Follow Twitter Facebook LinkedIn Twitch Email Updates.',
    'How can Lambda be used to deploy trained ML models using a preferred web application framework?',
    'How has PayEye been able to accelerate their development process and enter the production phase within a few months using AWS services, and what impact has this had on their recruitment efforts and team focus?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5121     |
| cosine_accuracy@3   | 0.8266     |
| cosine_accuracy@5   | 0.9234     |
| cosine_accuracy@10  | 0.9637     |
| cosine_precision@1  | 0.5121     |
| cosine_precision@3  | 0.2755     |
| cosine_precision@5  | 0.1847     |
| cosine_precision@10 | 0.0964     |
| cosine_recall@1     | 0.5121     |
| cosine_recall@3     | 0.8266     |
| cosine_recall@5     | 0.9234     |
| cosine_recall@10    | 0.9637     |
| cosine_ndcg@10      | 0.7539     |
| cosine_mrr@10       | 0.6844     |
| **cosine_map@100**  | **0.6859** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5323     |
| cosine_accuracy@3   | 0.8226     |
| cosine_accuracy@5   | 0.9194     |
| cosine_accuracy@10  | 0.9677     |
| cosine_precision@1  | 0.5323     |
| cosine_precision@3  | 0.2742     |
| cosine_precision@5  | 0.1839     |
| cosine_precision@10 | 0.0968     |
| cosine_recall@1     | 0.5323     |
| cosine_recall@3     | 0.8226     |
| cosine_recall@5     | 0.9194     |
| cosine_recall@10    | 0.9677     |
| cosine_ndcg@10      | 0.7597     |
| cosine_mrr@10       | 0.6913     |
| **cosine_map@100**  | **0.6924** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5242     |
| cosine_accuracy@3   | 0.8226     |
| cosine_accuracy@5   | 0.9194     |
| cosine_accuracy@10  | 0.9597     |
| cosine_precision@1  | 0.5242     |
| cosine_precision@3  | 0.2742     |
| cosine_precision@5  | 0.1839     |
| cosine_precision@10 | 0.096      |
| cosine_recall@1     | 0.5242     |
| cosine_recall@3     | 0.8226     |
| cosine_recall@5     | 0.9194     |
| cosine_recall@10    | 0.9597     |
| cosine_ndcg@10      | 0.7528     |
| cosine_mrr@10       | 0.6846     |
| **cosine_map@100**  | **0.6863** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.496      |
| cosine_accuracy@3   | 0.7903     |
| cosine_accuracy@5   | 0.8911     |
| cosine_accuracy@10  | 0.9556     |
| cosine_precision@1  | 0.496      |
| cosine_precision@3  | 0.2634     |
| cosine_precision@5  | 0.1782     |
| cosine_precision@10 | 0.0956     |
| cosine_recall@1     | 0.496      |
| cosine_recall@3     | 0.7903     |
| cosine_recall@5     | 0.8911     |
| cosine_recall@10    | 0.9556     |
| cosine_ndcg@10      | 0.7338     |
| cosine_mrr@10       | 0.6613     |
| **cosine_map@100**  | **0.6631** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4476     |
| cosine_accuracy@3   | 0.7661     |
| cosine_accuracy@5   | 0.879      |
| cosine_accuracy@10  | 0.9476     |
| cosine_precision@1  | 0.4476     |
| cosine_precision@3  | 0.2554     |
| cosine_precision@5  | 0.1758     |
| cosine_precision@10 | 0.0948     |
| cosine_recall@1     | 0.4476     |
| cosine_recall@3     | 0.7661     |
| cosine_recall@5     | 0.879      |
| cosine_recall@10    | 0.9476     |
| cosine_ndcg@10      | 0.7053     |
| cosine_mrr@10       | 0.6261     |
| **cosine_map@100**  | **0.6277** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 2,231 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 430.06 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 33.49 tokens</li><li>max: 65 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | anchor                                                                                                                                                                       |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>TCSG is helping students enter a competitive workforce as educated cloud professionals and providing opportunities for success. TCSG built its Cloud Academy using AWS Academy, which provides higher education institutions with a free, ready-to-teach cloud computing curriculum that prepares students to pursue industry-recognized certifications and in-demand cloud jobs. TCSG launched the TCSG Cloud Academy in two forms: one as a specialization within an existing associate’s degree and the second as a stand-alone technical certificate of credit. For the technical certificate of credit, students who have existing degrees can enter the curriculum to focus on cloud computing and participate in hands-on cloud experiences using AWS services. Tiếng Việt Italiano ไทย The Technical College System of Georgia is the state government agency that supervises workforce development of more than 294,000 students across 22 technical colleges, 88 campuses, and more than 600 programs. Using the AWS curriculum and technology as the foundation for its courses, TCSG is preparing students to earn industry-recognized AWS Certifications to increase employability while improving accessibility to cloud education by offering the academy virtually and remotely. Learn more » TCSG is the state of Georgia government agency that supervises workforce development of hundreds of thousands of students across 22 technical colleges, 88 campuses, and more than 600 programs. The agency aims to run a system of technical education using the latest technology that’s accessible to all adults and corporate citizens in the state. To develop and deploy its new cloud-focused curriculum, it worked with AWS Education Programs, which helps TCSG institutions develop initiatives that align education to careers in the cloud and promote student employability, preparing diverse learners for in-demand cloud roles around the world. In 2020, the organization officially launched the TCSG Cloud Academy—a virtual program for students pursuing expertise and certifications in cloud computing—on its eCampus virtual learning system. Organizations of all sizes across all industries are transforming their businesses and delivering on their missions every day using AWS. Contact our experts and start your own AWS journey today. Português.</code> | <code>How has the use of AWS Academy by TCSG helped prepare students for pursuing industry-recognized certifications and in-demand cloud jobs in Georgia's workforce?</code> |
  | <code>This prompt is then provided to the LLM for generating an answer to the user question. @router. post("/rag") async def rag_handler(req: Request) -> Dict[str, Any]: # dump the received request for debugging purposes logger. info(f"req={req}") # initialize vector db and SageMaker Endpoint _init(req) # Use the vector db to find similar documents to the query # the vector db call would automatically convert the query text # into embeddings docs = _vector_db. similarity_search(req. q, k=req. max_matching_docs) logger. info(f"here are the {req. max_matching_docs} closest matching docs to the query=\"{req. q}\"") for d in docs: logger. info(f"---------") logger. info(d) logger. info(f"---------") # now that we have the matching docs, lets pack them as a context # into the prompt and ask the LLM to generate a response prompt_template = """Answer based on context:\n\n{context}\n\n{question}""" prompt = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) logger. info(f"prompt sent to llm = \"{prompt}\"") chain = load_qa_chain(llm=_sm_llm, prompt=prompt) answer = chain({"input_documents": docs, "question": req. q}, return_only_outputs=True)['output_text'] logger. info(f"answer received from llm,\nquestion: \"{req. q}\"\nanswer: \"{answer}\"") resp = {'question': req. q, 'answer': answer} if req. verbose is True: resp['docs'] = docs return resp Clean up To avoid incurring future charges, delete the resources. You can do this by deleting the CloudFormation stack as shown in the following screenshot.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <code>What resources need to be deleted to avoid future charges, and how can they be deleted?</code>                                                                         |
  | <code>append(input_1_s3_location) async_response = base_model_predictor. predict_async(input_path=input_1_s3_location) output_locations. append(async_response. output_path) if i > max_images: break This may take up to 30 minutes or more depending on how much data you have uploaded for asynchronous inference. You can visualize one of these inferences as follows: plot_response('data/single. out') Convert the asynchronous inference output to a Ground Truth input manifest In this step, we create an input manifest for a bounding box verification job on Ground Truth. We upload the Ground Truth UI template and label categories file, and create the verification job. The notebook linked to this post uses a private workforce to perform the labeling; you can change this if you’re using other types of workforces. For more details, refer to the full code in the notebook. Verify labels from the auto-labeling process in Ground Truth In this step, we complete the verification by accessing the labeling portal. For more details, refer to here. When you access the portal as a workforce member, you will be able to see the bounding boxes created by the JumpStart model and make adjustments as required. You can use this template to repeat auto-labeling with many task-specific models, potentially merge labels, and use the resulting labeled dataset in downstream tasks. Clean up In this step, we clean up by deleting the endpoint and the model created in previous steps: # Delete the SageMaker endpoint base_model_predictor. delete_model() base_model_predictor. delete_endpoint() Conclusion In this post, we walked through an auto-labeling process involving JumpStart and asynchronous inference. We used the results of the auto-labeling process to convert and visualize labeled data on a real-world dataset. You can use the solution to perform auto-labeling with many task-specific models, potentially merge labels, and use the resulting labeled dataset in downstream tasks. You can also explore using tools like the Segment Anything Model for generating segment masks as part of the auto-labeling process. In future posts in this series, we will cover the perception module and segmentation.</code>                                                                                                                           | <code>How can you visualize the inferences generated by the asynchronous inference process using the provided solution?</code>                                               |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step  | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.9143     | 4     | -             | 0.6663                 | 0.6851                 | 0.7027                 | 0.6120                | 0.6998                 |
| **1.8286** | **8** | **-**         | **0.6758**             | **0.6822**             | **0.6966**             | **0.6311**            | **0.6941**             |
| 2.2857     | 10    | 1.883         | -                      | -                      | -                      | -                     | -                      |
| 2.9714     | 13    | -             | 0.6631                 | 0.6881                 | 0.6904                 | 0.6245                | 0.6873                 |
| 3.6571     | 16    | -             | 0.6631                 | 0.6863                 | 0.6924                 | 0.6277                | 0.6859                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->