Question Answering
aniketr commited on
Commit
0970523
1 Parent(s): 774d251

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -0
README.md CHANGED
@@ -1,3 +1,31 @@
1
  ---
2
  license: mit
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - natural_questions
5
+ pipeline_tag: question-answering
6
  ---
7
+ # AdANNS: A Framework for Adaptive Semantic Search 馃拑
8
+ _Aniket Rege*, Aditya Kusupati*, Sharan Ranjit S, Alan Fan, Qinqqing Cao, Sham Kakade, Prateek Jain, Ali Farhadi_
9
+
10
+ GitHub: https://github.com/RAIVNLab/AdANNS
11
+
12
+ Arxiv: https://arxiv.org/abs/2305.19435
13
+
14
+ We provide four BERT-Base models finetuned on Natural Questions with [Matryoshka Representation Learning](https://github.com/RAIVNLab/MRL) (MRL).
15
+
16
+ A vanilla pretrained BERT-Base has a 768-d representation (information bottleneck). As we train with MRL, we enforce the network to learn representations at
17
+ multiple granularities nested within a 768-d embedding. The granularities at which we finetune BERT-Base with Matroyshka Loss are specified in the folder name,
18
+ e.g. for `dpr-nq-d768_384_192_96_48`, we have d=[48, 96, 192, 384, 768].
19
+
20
+ ## Citation
21
+ If you find this project useful in your research, please consider citing:
22
+ ```
23
+ @inproceedings{rege2023adanns,
24
+ title={AdANNS: A Framework for Adaptive Semantic Search},
25
+ author={Aniket Rege and Aditya Kusupati and Sharan Ranjit S and Alan Fan and Qingqing Cao and Sham Kakade and Prateek Jain and Ali Farhadi},
26
+ year={2023},
27
+ booktitle = {Advances in Neural Information Processing Systems},
28
+ month = {December},
29
+ year = {2023},
30
+ }
31
+ ```