update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: PromoGen_K562_2080Ti_restart
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# PromoGen_K562_2080Ti_restart
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.4624
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 0.0005
|
36 |
+
- train_batch_size: 8
|
37 |
+
- eval_batch_size: 8
|
38 |
+
- seed: 42
|
39 |
+
- gradient_accumulation_steps: 8
|
40 |
+
- total_train_batch_size: 64
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: cosine
|
43 |
+
- lr_scheduler_warmup_steps: 1000
|
44 |
+
- num_epochs: 25
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:------:|:---------------:|
|
51 |
+
| 0.7676 | 0.49 | 2500 | 0.7383 |
|
52 |
+
| 0.7121 | 0.97 | 5000 | 0.6867 |
|
53 |
+
| 0.6914 | 1.46 | 7500 | 0.6705 |
|
54 |
+
| 0.6837 | 1.95 | 10000 | 0.6622 |
|
55 |
+
| 0.6778 | 2.44 | 12500 | 0.6558 |
|
56 |
+
| 0.6748 | 2.92 | 15000 | 0.6517 |
|
57 |
+
| 0.6676 | 3.41 | 17500 | 0.6433 |
|
58 |
+
| 0.6593 | 3.9 | 20000 | 0.6358 |
|
59 |
+
| 0.6584 | 4.38 | 22500 | 0.6320 |
|
60 |
+
| 0.6557 | 4.87 | 25000 | 0.6301 |
|
61 |
+
| 0.6523 | 5.36 | 27500 | 0.6257 |
|
62 |
+
| 0.6478 | 5.84 | 30000 | 0.6236 |
|
63 |
+
| 0.6393 | 6.33 | 32500 | 0.6145 |
|
64 |
+
| 0.6039 | 6.82 | 35000 | 0.5658 |
|
65 |
+
| 0.5616 | 7.31 | 37500 | 0.5376 |
|
66 |
+
| 0.5518 | 7.79 | 40000 | 0.5310 |
|
67 |
+
| 0.5509 | 8.28 | 42500 | 0.5273 |
|
68 |
+
| 0.5487 | 8.77 | 45000 | 0.5261 |
|
69 |
+
| 0.5479 | 9.25 | 47500 | 0.5249 |
|
70 |
+
| 0.546 | 9.74 | 50000 | 0.5242 |
|
71 |
+
| 0.5447 | 10.23 | 52500 | 0.5229 |
|
72 |
+
| 0.5439 | 10.71 | 55000 | 0.5220 |
|
73 |
+
| 0.5433 | 11.2 | 57500 | 0.5209 |
|
74 |
+
| 0.5394 | 11.69 | 60000 | 0.5162 |
|
75 |
+
| 0.5153 | 12.18 | 62500 | 0.4944 |
|
76 |
+
| 0.5137 | 12.66 | 65000 | 0.4932 |
|
77 |
+
| 0.514 | 13.15 | 67500 | 0.4924 |
|
78 |
+
| 0.5131 | 13.64 | 70000 | 0.4919 |
|
79 |
+
| 0.5104 | 14.12 | 72500 | 0.4914 |
|
80 |
+
| 0.5122 | 14.61 | 75000 | 0.4906 |
|
81 |
+
| 0.5089 | 15.1 | 77500 | 0.4901 |
|
82 |
+
| 0.5076 | 15.59 | 80000 | 0.4891 |
|
83 |
+
| 0.4986 | 16.07 | 82500 | 0.4721 |
|
84 |
+
| 0.4875 | 16.56 | 85000 | 0.4672 |
|
85 |
+
| 0.4887 | 17.05 | 87500 | 0.4669 |
|
86 |
+
| 0.4839 | 17.53 | 90000 | 0.4661 |
|
87 |
+
| 0.4849 | 18.02 | 92500 | 0.4654 |
|
88 |
+
| 0.4848 | 18.51 | 95000 | 0.4649 |
|
89 |
+
| 0.4831 | 18.99 | 97500 | 0.4646 |
|
90 |
+
| 0.4816 | 19.48 | 100000 | 0.4644 |
|
91 |
+
| 0.4808 | 19.97 | 102500 | 0.4637 |
|
92 |
+
| 0.4812 | 20.46 | 105000 | 0.4634 |
|
93 |
+
| 0.4813 | 20.94 | 107500 | 0.4633 |
|
94 |
+
| 0.4818 | 21.43 | 110000 | 0.4631 |
|
95 |
+
| 0.4813 | 21.92 | 112500 | 0.4629 |
|
96 |
+
| 0.4782 | 22.4 | 115000 | 0.4628 |
|
97 |
+
| 0.4804 | 22.89 | 117500 | 0.4626 |
|
98 |
+
| 0.4815 | 23.38 | 120000 | 0.4625 |
|
99 |
+
| 0.4812 | 23.87 | 122500 | 0.4625 |
|
100 |
+
| 0.4785 | 24.35 | 125000 | 0.4624 |
|
101 |
+
| 0.4795 | 24.84 | 127500 | 0.4624 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.24.0
|
107 |
+
- Pytorch 1.13.0
|
108 |
+
- Datasets 2.7.0
|
109 |
+
- Tokenizers 0.13.0.dev0
|