--- base_model: Fsoft-AIC/videberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: videberta-base-finetuned-ner-2 results: [] --- # videberta-base-finetuned-ner-2 This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co./Fsoft-AIC/videberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0166 - Precision: 0.9824 - Recall: 0.9873 - F1: 0.9849 - Accuracy: 0.9952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 328 | 0.0559 | 0.9156 | 0.9364 | 0.9259 | 0.9794 | | 0.3316 | 2.0 | 656 | 0.0330 | 0.9612 | 0.9741 | 0.9676 | 0.9899 | | 0.3316 | 3.0 | 984 | 0.0231 | 0.9748 | 0.9821 | 0.9784 | 0.9930 | | 0.0377 | 4.0 | 1312 | 0.0174 | 0.9826 | 0.9860 | 0.9843 | 0.9949 | | 0.0149 | 5.0 | 1640 | 0.0166 | 0.9824 | 0.9873 | 0.9849 | 0.9952 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3