mistral-sft-v3 / axolotl.yml
andysalerno's picture
Create axolotl.yml
37292fc verified
raw
history blame
1.65 kB
base_model: ./mistralai/Mistral-7B-v0.1-chatml
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: andysalerno/ansalern-nectar-inputoutput
type:
field_instruction: input
field_output: output
format: "{instruction}"
no_input_format: "{instruction}"
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true # was true
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save: ['embed_tokens', 'lm_head']
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
- embed_tokens
- lm_head
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience: 3
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 0.1
eval_steps: 50
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 300
max_steps: 300
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|im_start|>"
eos_token: "<|im_end|>"
unk_token: "<unk>"