andrewsiah commited on
Commit
c749336
1 Parent(s): d22bab6

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 232.47 +/- 45.02
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8bdd8a03a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8bdd8a0430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8bdd8a04c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8bdd8a0550>", "_build": "<function ActorCriticPolicy._build at 0x7f8bdd8a05e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8bdd8a0670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8bdd8a0700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8bdd8a0790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8bdd8a0820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8bdd8a08b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8bdd8a0940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8bdd8a09d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8bdd8ae2c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687042836284212103, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAVmL0UaLS6Jq4ENWclCjBEK2u54DNptAAAgD8AAIA/pnKDPRKvwj9wWcU+CjsPPh96rD2mlYQ+AAAAAAAAAABmBoe6w01sunLAnjq1cIg1gYoWu+DvubkAAIA/AACAP40UJ77Jo08+oL0EPiCMbr6h0ug8O5DQvAAAAAAAAAAAmhfyvX2rqD4Wd9I8vhdPvm5VDTq8Yga+AAAAAAAAAAAANk+9jwp1utAw1Tm89wGzZrY2u/qE9bgAAIA/AACAP+ZDoz2uuYq65j9iORcJUjQXjYI4sHqDuAAAgD8AAAAAzejPPBRdoT9iPyU+pAS0vjtDoLxupyS9AAAAAAAAAABtJgc+jCK/Pkplhr15uma+NmM+PTEAvL0AAAAAAAAAADOetb2uP4y6CMCGOQv7zjQvXjE7NP+auAAAAAAAAIA/ANy0vYG5yD0XhKE9HpwtvuB7Gj1gVKI7AAAAAAAAAAAadnA96xsqPw06bL1ejoq+nKqcO4guLbwAAAAAAAAAAGZorL2P5jW6Bl+QuREMCLVJbrI7JH2oOAAAgD8AAIA/LdxWPrFBND/ksoG9Ic2SvqCLfj0+l8K9AAAAAAAAAACAihi99vRrum0nqLax76qxd9lBOW5yyTUAAIA/AACAP5p2UT0pmHu6DVrQtgAZYTDS/qo6Y6X4NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF4YTRIBikSMAWyUTegDjAF0lEdAo0pfPE87p3V9lChoBkdAY4p2kBS1mmgHTegDaAhHQKNL0w3YL9d1fZQoaAZHQGVqI0hvBJtoB03oA2gIR0CjTcDwYtQLdX2UKGgGR0BggWRRuTA4aAdN6ANoCEdAo086S5iEx3V9lChoBkdAYNFHWjGkvmgHTegDaAhHQKNQza0QbuN1fZQoaAZHQGZ5EX+ERJ5oB03oA2gIR0CjUndwWFewdX2UKGgGR0Bg8uoHcDbKaAdN6ANoCEdAo2DUWCVbA3V9lChoBkdAY7Ww7kn1F2gHTegDaAhHQKNndrzGxUx1fZQoaAZHQGKbStvGZNRoB03oA2gIR0CjaTAjyFwldX2UKGgGR0Bje4pKBd2QaAdN6ANoCEdAo2vDNt65XnV9lChoBkdAaT6gBcRlH2gHTegDaAhHQKNr/J4B3id1fZQoaAZHQGPv6Xrt3OhoB03oA2gIR0CjbcjsdDIBdX2UKGgGR0Bg6mdf9gndaAdN6ANoCEdAo259qpLmIXV9lChoBkdAbtiOlO45LmgHTRcCaAhHQKNukjafzz51fZQoaAZHQG9pFB6a9bpoB03RA2gIR0CjcPNo8IRidX2UKGgGR0BHC9XcQAdXaAdL6mgIR0CjcwD8LroodX2UKGgGR0BiaXQpnYg8aAdN6ANoCEdAo3S3J1aGH3V9lChoBkdAYZVD/EOy3WgHTegDaAhHQKN1rqs2ehB1fZQoaAZHQGgtOEM9bHJoB03oA2gIR0CjdtAkcCHRdX2UKGgGR0Bd2DgQ6IWQaAdN6ANoCEdAo3gTMNc4YXV9lChoBkdAcLQAHE/B32gHTakBaAhHQKN4xl6qsEJ1fZQoaAZHQF2hJI1+AmRoB03oA2gIR0CjeicI7eVLdX2UKGgGR0Bt4eNR3u/laAdN3wNoCEdAo3tx2jfvW3V9lChoBkdAcIyBWxQizWgHTY8CaAhHQKN/GXAuZkV1fZQoaAZHQGTlbkOqebxoB03oA2gIR0Cjf87ExZdOdX2UKGgGR0Bo5ns/pt78aAdN6ANoCEdAo4yFM23rlnV9lChoBkdAcW9rzoUzsWgHTdQCaAhHQKOOAAtnPE91fZQoaAZHQG9F/qPfbbloB00dAmgIR0Cjj25ssQNDdX2UKGgGR0BrtH4fwI+oaAdN2wFoCEdAo5CzS3LFGXV9lChoBkdAY/9olD4QBmgHTegDaAhHQKOQ3wKjSG91fZQoaAZHQG6mJi7TUiJoB02KAmgIR0CjkPnuiN83dX2UKGgGR0Bw4rXg9/z8aAdN1QFoCEdAo5ICpR4yGnV9lChoBkdAZRk96kZaV2gHTegDaAhHQKOWKf1YhdN1fZQoaAZHQG4x2iUPhAJoB02SA2gIR0Cjli8Sf16FdX2UKGgGR0BnEYWYWtU5aAdN6ANoCEdAo5Y8SCe2/nV9lChoBkdAcm8EvCdjG2gHTXMCaAhHQKOXXUn5SFZ1fZQoaAZHQG331Z1V5rxoB01tAmgIR0Cjm0AOavzOdX2UKGgGR0BxUZQSBbwCaAdNzgFoCEdAo54W4oZydXV9lChoBkdAZR02WIGhVWgHTegDaAhHQKOfPnAZbY91fZQoaAZHQHGm6KpDNQloB03ZAWgIR0CjoMlJg9eQdX2UKGgGR0BlF7Rv3rUtaAdN6ANoCEdAo6DVVR1ox3V9lChoBkdAYkgbLEDQq2gHTegDaAhHQKOijyLhrFh1fZQoaAZHQGfcdnK4hEBoB03oA2gIR0Cjp5pOvdM1dX2UKGgGR0BxgWhzvJA/aAdNWAFoCEdAo6qhD5TIenV9lChoBkdAYxfpoK2KEWgHTegDaAhHQKOs81P3ztl1fZQoaAZHQGRi/DtPYWdoB03oA2gIR0Cjt1bN8ma6dX2UKGgGR0Bg+mp84PwvaAdN6ANoCEdAo7toUrTYunV9lChoBkdAYcxdKNAC4mgHTegDaAhHQKO7rWYnfEZ1fZQoaAZHQG+ZlZPl+3JoB01UAmgIR0Cju/lDOTq0dX2UKGgGR0BsHOrQw9JSaAdNOQNoCEdAo7yxkbxVhnV9lChoBkdAY1l5prULD2gHTegDaAhHQKO9bVyWAwx1fZQoaAZHQHAad7OVxCJoB01BAmgIR0CjvcGmLtNSdX2UKGgGR0BwuxgTh5xBaAdNawNoCEdAo76Km2sq8XV9lChoBkdAbdXdJrcj7mgHTT0BaAhHQKPA6j6eoUB1fZQoaAZHQGEHYGlhw2loB03oA2gIR0CjwbXOGCZndX2UKGgGR0BwbZo24uscaAdNqwJoCEdAo8I98G9pRHV9lChoBkdAZvQfbsWweWgHTegDaAhHQKPCoqgAZKp1fZQoaAZHQHGpGzOX3QFoB02PAWgIR0CjxDiS7oStdX2UKGgGR0Bli05wOvt/aAdN6ANoCEdAo8VA0Mw1znV9lChoBkdAcUmpXp4bCWgHTXICaAhHQKPHJL9uP3l1fZQoaAZHQHGyuCsfaHtoB02sAWgIR0Cjx39srNGFdX2UKGgGR0ByOVBKL877aAdNqAFoCEdAo8ePDJlrdnV9lChoBkdAY2FJ5E+gUWgHTegDaAhHQKPI7hy8zyl1fZQoaAZHQHFqRnOB19xoB03DAWgIR0CjyafigkC4dX2UKGgGR0BvJsqtozvaaAdNUAFoCEdAo8sc4tHx0HV9lChoBkdAcbSQnQY1pGgHTd8BaAhHQKPNoS5AhSt1fZQoaAZHQHMGazE74i5oB02GAWgIR0CjzuZNO/L1dX2UKGgGR0Bg2d/MGHHnaAdN6ANoCEdAo889QO4G2XV9lChoBkdAcFvKPGQ0XWgHTYICaAhHQKPPyoa1kUd1fZQoaAZHQHCbHZGrjo9oB03hAWgIR0Cj0tKu8scydX2UKGgGR0Bs9DXnQpnZaAdNmwFoCEdAo9NUjZ+QVHV9lChoBkdAcec2U0Nz82gHTUMDaAhHQKPUTomG/N91fZQoaAZHQFvwrsjVx0doB03oA2gIR0Cj40NYjjaPdX2UKGgGR0BriHmq5sj3aAdNFwJoCEdAo+RV4A0bcXV9lChoBkdAXimAqd6LO2gHTegDaAhHQKPkfZdOZb91fZQoaAZHQGyfWL5ylvZoB02BA2gIR0Cj5gAwGnn/dX2UKGgGR0BwktTn7pFDaAdN1QFoCEdAo+aQg7o0RHV9lChoBkdAcA8RBNVR12gHTYECaAhHQKPmrTH80k51fZQoaAZHQHCvSq6vq1RoB01NAmgIR0Cj52FXiiqRdX2UKGgGR0BwC/Dfm9xqaAdNPAFoCEdAo+d7987ZF3V9lChoBkdAbt8kfs/puGgHTeEBaAhHQKPoO7UXpGF1fZQoaAZHQHCv8OG0u15oB016AWgIR0Cj6KDrRjSYdX2UKGgGR0BkR+z6ab4KaAdN6ANoCEdAo+mGfXf643V9lChoBkdAWIgpmVZ9u2gHTegDaAhHQKPufbhWHUN1fZQoaAZHQGLzjP4VRDVoB03oA2gIR0Cj7vLIPsiTdX2UKGgGR0Bqppx1gYxdaAdNQwJoCEdAo++PoLXtjXV9lChoBkdAcKKcYIjW1GgHTUcBaAhHQKPvqYk3S8d1fZQoaAZHQG/GLwe/5+JoB02NAWgIR0Cj76nNHH3ldX2UKGgGR0Btdt2Pkq+baAdNbAFoCEdAo/JXbGm1pnV9lChoBkdAb5vkKeCkGmgHTbABaAhHQKPy4KyfL9x1fZQoaAZHQHINJd8iOedoB01hAWgIR0Cj8xiPp6hQdX2UKGgGR0Bw9KwW3z+WaAdNSgFoCEdAo/Re1MM7VHV9lChoBkdAYE5qD9OymmgHTegDaAhHQKP5VJpWV/t1fZQoaAZHQGhtlDF6zE9oB03oA2gIR0Cj+pgydnTRdX2UKGgGR0BvXOi+L3sYaAdN3wJoCEdAo/thPKuB+XV9lChoBkdAcTr8wpON52gHTTgBaAhHQKP7txffGdZ1fZQoaAZHQGxAUqH446xoB01cAWgIR0Cj/C98zAN5dX2UKGgGR0BwZ/wazeGgaAdNWQJoCEdAo/0GVs1sL3V9lChoBkdAb+68bJfYz2gHTWcBaAhHQKP/rttygf51fZQoaAZHQG5W9oexOcloB010AWgIR0Cj/60l7dBTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e19a13b55e252f636114ea5b926a04648016297d80bd65c2e2a9fee89ba39ce
3
+ size 146755
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8bdd8a03a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8bdd8a0430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8bdd8a04c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8bdd8a0550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8bdd8a05e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8bdd8a0670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8bdd8a0700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8bdd8a0790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8bdd8a0820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8bdd8a08b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8bdd8a0940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8bdd8a09d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8bdd8ae2c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1687042836284212103,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAVmL0UaLS6Jq4ENWclCjBEK2u54DNptAAAgD8AAIA/pnKDPRKvwj9wWcU+CjsPPh96rD2mlYQ+AAAAAAAAAABmBoe6w01sunLAnjq1cIg1gYoWu+DvubkAAIA/AACAP40UJ77Jo08+oL0EPiCMbr6h0ug8O5DQvAAAAAAAAAAAmhfyvX2rqD4Wd9I8vhdPvm5VDTq8Yga+AAAAAAAAAAAANk+9jwp1utAw1Tm89wGzZrY2u/qE9bgAAIA/AACAP+ZDoz2uuYq65j9iORcJUjQXjYI4sHqDuAAAgD8AAAAAzejPPBRdoT9iPyU+pAS0vjtDoLxupyS9AAAAAAAAAABtJgc+jCK/Pkplhr15uma+NmM+PTEAvL0AAAAAAAAAADOetb2uP4y6CMCGOQv7zjQvXjE7NP+auAAAAAAAAIA/ANy0vYG5yD0XhKE9HpwtvuB7Gj1gVKI7AAAAAAAAAAAadnA96xsqPw06bL1ejoq+nKqcO4guLbwAAAAAAAAAAGZorL2P5jW6Bl+QuREMCLVJbrI7JH2oOAAAgD8AAIA/LdxWPrFBND/ksoG9Ic2SvqCLfj0+l8K9AAAAAAAAAACAihi99vRrum0nqLax76qxd9lBOW5yyTUAAIA/AACAP5p2UT0pmHu6DVrQtgAZYTDS/qo6Y6X4NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF4YTRIBikSMAWyUTegDjAF0lEdAo0pfPE87p3V9lChoBkdAY4p2kBS1mmgHTegDaAhHQKNL0w3YL9d1fZQoaAZHQGVqI0hvBJtoB03oA2gIR0CjTcDwYtQLdX2UKGgGR0BggWRRuTA4aAdN6ANoCEdAo086S5iEx3V9lChoBkdAYNFHWjGkvmgHTegDaAhHQKNQza0QbuN1fZQoaAZHQGZ5EX+ERJ5oB03oA2gIR0CjUndwWFewdX2UKGgGR0Bg8uoHcDbKaAdN6ANoCEdAo2DUWCVbA3V9lChoBkdAY7Ww7kn1F2gHTegDaAhHQKNndrzGxUx1fZQoaAZHQGKbStvGZNRoB03oA2gIR0CjaTAjyFwldX2UKGgGR0Bje4pKBd2QaAdN6ANoCEdAo2vDNt65XnV9lChoBkdAaT6gBcRlH2gHTegDaAhHQKNr/J4B3id1fZQoaAZHQGPv6Xrt3OhoB03oA2gIR0CjbcjsdDIBdX2UKGgGR0Bg6mdf9gndaAdN6ANoCEdAo259qpLmIXV9lChoBkdAbtiOlO45LmgHTRcCaAhHQKNukjafzz51fZQoaAZHQG9pFB6a9bpoB03RA2gIR0CjcPNo8IRidX2UKGgGR0BHC9XcQAdXaAdL6mgIR0CjcwD8LroodX2UKGgGR0BiaXQpnYg8aAdN6ANoCEdAo3S3J1aGH3V9lChoBkdAYZVD/EOy3WgHTegDaAhHQKN1rqs2ehB1fZQoaAZHQGgtOEM9bHJoB03oA2gIR0CjdtAkcCHRdX2UKGgGR0Bd2DgQ6IWQaAdN6ANoCEdAo3gTMNc4YXV9lChoBkdAcLQAHE/B32gHTakBaAhHQKN4xl6qsEJ1fZQoaAZHQF2hJI1+AmRoB03oA2gIR0CjeicI7eVLdX2UKGgGR0Bt4eNR3u/laAdN3wNoCEdAo3tx2jfvW3V9lChoBkdAcIyBWxQizWgHTY8CaAhHQKN/GXAuZkV1fZQoaAZHQGTlbkOqebxoB03oA2gIR0Cjf87ExZdOdX2UKGgGR0Bo5ns/pt78aAdN6ANoCEdAo4yFM23rlnV9lChoBkdAcW9rzoUzsWgHTdQCaAhHQKOOAAtnPE91fZQoaAZHQG9F/qPfbbloB00dAmgIR0Cjj25ssQNDdX2UKGgGR0BrtH4fwI+oaAdN2wFoCEdAo5CzS3LFGXV9lChoBkdAY/9olD4QBmgHTegDaAhHQKOQ3wKjSG91fZQoaAZHQG6mJi7TUiJoB02KAmgIR0CjkPnuiN83dX2UKGgGR0Bw4rXg9/z8aAdN1QFoCEdAo5ICpR4yGnV9lChoBkdAZRk96kZaV2gHTegDaAhHQKOWKf1YhdN1fZQoaAZHQG4x2iUPhAJoB02SA2gIR0Cjli8Sf16FdX2UKGgGR0BnEYWYWtU5aAdN6ANoCEdAo5Y8SCe2/nV9lChoBkdAcm8EvCdjG2gHTXMCaAhHQKOXXUn5SFZ1fZQoaAZHQG331Z1V5rxoB01tAmgIR0Cjm0AOavzOdX2UKGgGR0BxUZQSBbwCaAdNzgFoCEdAo54W4oZydXV9lChoBkdAZR02WIGhVWgHTegDaAhHQKOfPnAZbY91fZQoaAZHQHGm6KpDNQloB03ZAWgIR0CjoMlJg9eQdX2UKGgGR0BlF7Rv3rUtaAdN6ANoCEdAo6DVVR1ox3V9lChoBkdAYkgbLEDQq2gHTegDaAhHQKOijyLhrFh1fZQoaAZHQGfcdnK4hEBoB03oA2gIR0Cjp5pOvdM1dX2UKGgGR0BxgWhzvJA/aAdNWAFoCEdAo6qhD5TIenV9lChoBkdAYxfpoK2KEWgHTegDaAhHQKOs81P3ztl1fZQoaAZHQGRi/DtPYWdoB03oA2gIR0Cjt1bN8ma6dX2UKGgGR0Bg+mp84PwvaAdN6ANoCEdAo7toUrTYunV9lChoBkdAYcxdKNAC4mgHTegDaAhHQKO7rWYnfEZ1fZQoaAZHQG+ZlZPl+3JoB01UAmgIR0Cju/lDOTq0dX2UKGgGR0BsHOrQw9JSaAdNOQNoCEdAo7yxkbxVhnV9lChoBkdAY1l5prULD2gHTegDaAhHQKO9bVyWAwx1fZQoaAZHQHAad7OVxCJoB01BAmgIR0CjvcGmLtNSdX2UKGgGR0BwuxgTh5xBaAdNawNoCEdAo76Km2sq8XV9lChoBkdAbdXdJrcj7mgHTT0BaAhHQKPA6j6eoUB1fZQoaAZHQGEHYGlhw2loB03oA2gIR0CjwbXOGCZndX2UKGgGR0BwbZo24uscaAdNqwJoCEdAo8I98G9pRHV9lChoBkdAZvQfbsWweWgHTegDaAhHQKPCoqgAZKp1fZQoaAZHQHGpGzOX3QFoB02PAWgIR0CjxDiS7oStdX2UKGgGR0Bli05wOvt/aAdN6ANoCEdAo8VA0Mw1znV9lChoBkdAcUmpXp4bCWgHTXICaAhHQKPHJL9uP3l1fZQoaAZHQHGyuCsfaHtoB02sAWgIR0Cjx39srNGFdX2UKGgGR0ByOVBKL877aAdNqAFoCEdAo8ePDJlrdnV9lChoBkdAY2FJ5E+gUWgHTegDaAhHQKPI7hy8zyl1fZQoaAZHQHFqRnOB19xoB03DAWgIR0CjyafigkC4dX2UKGgGR0BvJsqtozvaaAdNUAFoCEdAo8sc4tHx0HV9lChoBkdAcbSQnQY1pGgHTd8BaAhHQKPNoS5AhSt1fZQoaAZHQHMGazE74i5oB02GAWgIR0CjzuZNO/L1dX2UKGgGR0Bg2d/MGHHnaAdN6ANoCEdAo889QO4G2XV9lChoBkdAcFvKPGQ0XWgHTYICaAhHQKPPyoa1kUd1fZQoaAZHQHCbHZGrjo9oB03hAWgIR0Cj0tKu8scydX2UKGgGR0Bs9DXnQpnZaAdNmwFoCEdAo9NUjZ+QVHV9lChoBkdAcec2U0Nz82gHTUMDaAhHQKPUTomG/N91fZQoaAZHQFvwrsjVx0doB03oA2gIR0Cj40NYjjaPdX2UKGgGR0BriHmq5sj3aAdNFwJoCEdAo+RV4A0bcXV9lChoBkdAXimAqd6LO2gHTegDaAhHQKPkfZdOZb91fZQoaAZHQGyfWL5ylvZoB02BA2gIR0Cj5gAwGnn/dX2UKGgGR0BwktTn7pFDaAdN1QFoCEdAo+aQg7o0RHV9lChoBkdAcA8RBNVR12gHTYECaAhHQKPmrTH80k51fZQoaAZHQHCvSq6vq1RoB01NAmgIR0Cj52FXiiqRdX2UKGgGR0BwC/Dfm9xqaAdNPAFoCEdAo+d7987ZF3V9lChoBkdAbt8kfs/puGgHTeEBaAhHQKPoO7UXpGF1fZQoaAZHQHCv8OG0u15oB016AWgIR0Cj6KDrRjSYdX2UKGgGR0BkR+z6ab4KaAdN6ANoCEdAo+mGfXf643V9lChoBkdAWIgpmVZ9u2gHTegDaAhHQKPufbhWHUN1fZQoaAZHQGLzjP4VRDVoB03oA2gIR0Cj7vLIPsiTdX2UKGgGR0Bqppx1gYxdaAdNQwJoCEdAo++PoLXtjXV9lChoBkdAcKKcYIjW1GgHTUcBaAhHQKPvqYk3S8d1fZQoaAZHQG/GLwe/5+JoB02NAWgIR0Cj76nNHH3ldX2UKGgGR0Btdt2Pkq+baAdNbAFoCEdAo/JXbGm1pnV9lChoBkdAb5vkKeCkGmgHTbABaAhHQKPy4KyfL9x1fZQoaAZHQHINJd8iOedoB01hAWgIR0Cj8xiPp6hQdX2UKGgGR0Bw9KwW3z+WaAdNSgFoCEdAo/Re1MM7VHV9lChoBkdAYE5qD9OymmgHTegDaAhHQKP5VJpWV/t1fZQoaAZHQGhtlDF6zE9oB03oA2gIR0Cj+pgydnTRdX2UKGgGR0BvXOi+L3sYaAdN3wJoCEdAo/thPKuB+XV9lChoBkdAcTr8wpON52gHTTgBaAhHQKP7txffGdZ1fZQoaAZHQGxAUqH446xoB01cAWgIR0Cj/C98zAN5dX2UKGgGR0BwZ/wazeGgaAdNWQJoCEdAo/0GVs1sL3V9lChoBkdAb+68bJfYz2gHTWcBaAhHQKP/rttygf51fZQoaAZHQG5W9oexOcloB010AWgIR0Cj/60l7dBTdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d517c15cfe18fb7e227ff4ce3d6fffea0853d54d220c50481d065e4d9925c2f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e444c2b2e80c0de42f0159123dfe268ea6ba675c1c0f4765492f855024679921
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (187 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 232.46996927537808, "std_reward": 45.0218930090976, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-17T23:49:25.979396"}