|
import os |
|
from typing import Dict, List, Any |
|
from transformers import AutoTokenizer |
|
from gector import GECToR, predict, load_verb_dict |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.model = GECToR.from_pretrained(path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.encode, self.decode = load_verb_dict( |
|
os.path.join(path, "data/verb-form-vocab.txt") |
|
) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
Process the input data and return the predicted results. |
|
|
|
Args: |
|
data (Dict[str, Any]): The input data dictionary containing the following keys: |
|
- "inputs" (List[str]): A list of input strings to be processed. |
|
- "n_iterations" (int, optional): The number of iterations for prediction. Defaults to 5. |
|
- "batch_size" (int, optional): The batch size for prediction. Defaults to 2. |
|
- "keep_confidence" (float, optional): The confidence threshold for keeping predictions. Defaults to 0.0. |
|
- "min_error_prob" (float, optional): The minimum error probability for keeping predictions. Defaults to 0.0. |
|
|
|
Returns: |
|
List[Dict[str, Any]]: A list of dictionaries containing the predicted results for each input string. |
|
""" |
|
srcs = data["inputs"] |
|
|
|
|
|
n_iterations = data.get("n_iterations", 5) |
|
batch_size = data.get("batch_size", 2) |
|
keep_confidence = data.get("keep_confidence", 0.0) |
|
min_error_prob = data.get("min_error_prob", 0.0) |
|
|
|
return predict( |
|
model=self.model, |
|
tokenizer=self.tokenizer, |
|
srcs=srcs, |
|
encode=self.encode, |
|
decode=self.decode, |
|
keep_confidence=keep_confidence, |
|
min_error_prob=min_error_prob, |
|
n_iteration=n_iterations, |
|
batch_size=batch_size, |
|
) |
|
|