LightGPT / pretrain.py
Andrew DalPino
Use SmolTalk dataset for instruction-tuning
111c2a3
raw
history blame
11.6 kB
import sys
import random
import signal
import warnings
from os import path, environ
from argparse import ArgumentParser
from contextlib import nullcontext
from functools import partial
import torch
from torch.utils.data import DataLoader
from torch.optim import Adafactor
from torch.amp import autocast
from torch.cuda import set_device, is_available as cuda_is_available, is_bf16_supported
from torch.nn.utils import clip_grad_norm_
from torch.distributed import init_process_group, destroy_process_group
from torch.distributed.fsdp import FullyShardedDataParallel, ShardingStrategy
from torch.utils.tensorboard import SummaryWriter
from torchmetrics.text import Perplexity
import tiktoken
from data import Fineweb
from model import LightGPT
from tqdm import tqdm
RANK = int(environ.get("RANK", -1))
LOCAL_RANK = int(environ.get("LOCAL_RANK", -1))
WORLD_SIZE = int(environ.get("WORLD_SIZE", -1))
IS_DDP = WORLD_SIZE > 1
IS_MASTER = RANK == 0 or not IS_DDP
DDP_BACKEND = "nccl"
def main():
parser = ArgumentParser(description="Pretrain the GPT.")
parser.add_argument(
"--dataset_subset",
default="sample-10BT",
choices=("sample-10BT", "sample-100BT", "sample-350BT", None),
)
parser.add_argument(
"--token_encoding",
default="r50k_base",
choices=("r50k_base", "p50k_base", "cl100k_base", "o200k_base"),
)
parser.add_argument("--dataset_path", default="./datasets", type=str)
parser.add_argument("--num_dataset_processes", default=8, type=int)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--gradient_accumulation_steps", default=128, type=int)
parser.add_argument("--tokens_per_sample", default=1024, type=int)
parser.add_argument("--samples_per_epoch", default=4096, type=int)
parser.add_argument("--num_epochs", default=1686, type=int)
parser.add_argument("--learning_rate", default=1e-2, type=float)
parser.add_argument("--rms_decay", default=-0.8, type=float)
parser.add_argument("--low_memory_optimizer", action="store_true")
parser.add_argument("--max_gradient_norm", default=1.0, type=float)
parser.add_argument("--dropout", default=0.1, type=float)
parser.add_argument("--embedding_dimensions", default=1024, type=int)
parser.add_argument("--num_attention_heads", default=16, type=int)
parser.add_argument("--num_hidden_layers", default=24, type=int)
parser.add_argument("--feed_forward_ratio", default=4, choices=(1, 2, 4))
parser.add_argument("--activation_checkpointing", action="store_true")
parser.add_argument("--ddp_sharding_level", default=2, choices=(0, 2, 3))
parser.add_argument("--eval_interval", default=10, type=int)
parser.add_argument("--checkpoint_interval", default=20, type=int)
parser.add_argument(
"--checkpoint_path", default="./checkpoints/checkpoint.pt", type=str
)
parser.add_argument("--resume", action="store_true")
parser.add_argument("--run_dir_path", default="./runs/pretrain", type=str)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--seed", default=None, type=int)
args = parser.parse_args()
if args.batch_size < 1:
raise ValueError(f"Batch size must be greater than 0, {args.batch_size} given.")
if args.gradient_accumulation_steps < 1:
raise ValueError(
f"Gradient accumulation steps must be greater than 0, {args.gradient_accumulation_steps} given."
)
if args.learning_rate < 0:
raise ValueError(
f"Learning rate must be a positive value, {args.learning_rate} given."
)
if args.num_epochs < 1:
raise ValueError(f"Must train for at least 1 epoch, {args.num_epochs} given.")
if args.eval_interval < 1:
raise ValueError(
f"Eval interval must be greater than 0, {args.eval_interval} given."
)
if args.checkpoint_interval < 1:
raise ValueError(
f"Checkpoint interval must be greater than 0, {args.checkpoint_interval} given."
)
if IS_DDP:
init_process_group(backend=DDP_BACKEND, world_size=WORLD_SIZE)
args.device = f"cuda:{LOCAL_RANK}"
set_device(args.device)
if args.gradient_accumulation_steps % WORLD_SIZE != 0:
warnings.warn(
"Number of gradient accumulation steps does not"
"divide evenly into the world size."
)
args.gradient_accumulation_steps //= WORLD_SIZE
assert (
args.gradient_accumulation_steps > 0
), "World size is larger than the number of gradient accumulation steps."
if args.samples_per_epoch % WORLD_SIZE != 0:
warnings.warn(
"Number of samples per epoch does not"
"divide evenly into the world size."
)
args.samples_per_epoch //= WORLD_SIZE
assert (
args.samples_per_epoch > 0
), "World size is larger than the number of samples per epoch."
if args.seed:
args.seed += RANK
torch.set_float32_matmul_precision("high")
if "cuda" in args.device and not cuda_is_available():
raise RuntimeError("Cuda is not available.")
dtype = (
torch.bfloat16
if "cuda" in args.device and is_bf16_supported()
else torch.float32
)
amp_context = autocast(device_type=args.device, dtype=dtype)
if args.seed:
torch.manual_seed(args.seed)
random.seed(args.seed)
logger = SummaryWriter(args.run_dir_path)
tokenizer = tiktoken.get_encoding(args.token_encoding)
build_fineweb = partial(
Fineweb,
root_path=args.dataset_path,
subset=args.dataset_subset,
tokenizer=tokenizer,
tokens_per_sample=args.tokens_per_sample,
samples_per_epoch=args.samples_per_epoch,
num_processes=args.num_dataset_processes,
)
training = build_fineweb(split="train")
testing = build_fineweb(split="test")
train_loader = DataLoader(
training, batch_size=args.batch_size, pin_memory="cpu" not in args.device
)
test_loader = DataLoader(
testing, batch_size=args.batch_size, pin_memory="cpu" not in args.device
)
model_args = {
"vocabulary_size": tokenizer.n_vocab,
"embedding_dimensions": args.embedding_dimensions,
"num_heads": args.num_attention_heads,
"num_layers": args.num_hidden_layers,
"feed_forward_ratio": args.feed_forward_ratio,
"dropout": args.dropout,
"padding_index": training.PADDING_INDEX,
"eos_index": tokenizer.eot_token,
}
model = LightGPT(**model_args)
if args.activation_checkpointing:
model.enable_activation_checkpointing()
print("Compiling model")
model = torch.compile(model)
if IS_DDP:
match args.ddp_sharding_level:
case 0:
sharding_strategy = ShardingStrategy.NO_SHARD
case 2:
sharding_strategy = ShardingStrategy.SHARD_GRAD_OP
case 3:
sharding_strategy = ShardingStrategy.FULL_SHARD
model = FullyShardedDataParallel(
model,
device_id=LOCAL_RANK,
sharding_strategy=sharding_strategy,
use_orig_params=True,
)
model = model.to(args.device)
optimizer = Adafactor(
model.parameters(),
lr=args.learning_rate,
beta2_decay=args.rms_decay,
foreach=not args.low_memory_optimizer,
)
starting_epoch = 1
if args.resume:
checkpoint = torch.load(
args.checkpoint_path, map_location="cpu", weights_only=True
) # Always load into CPU RAM first to prevent CUDA out-of-memory errors.
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
starting_epoch += checkpoint["epoch"]
model = model.to(args.device)
print("Previous checkpoint resumed successfully")
model.train()
print(f"Model has {model.num_trainable_params:,} trainable parameters")
perplexity_metric = Perplexity(ignore_index=training.PADDING_INDEX).to(args.device)
register_signal_handlers()
print("Pretraining ...")
for epoch in range(starting_epoch, args.num_epochs + 1):
total_cross_entropy, total_gradient_norm = 0.0, 0.0
total_batches, total_steps = 0, 0
for step, (x, y) in enumerate(
tqdm(train_loader, desc=f"Epoch {epoch}", leave=False), start=1
):
x = x.to(args.device, non_blocking=True)
y = y.to(args.device, non_blocking=True)
with amp_context:
y_pred, loss = model.forward(x, y)
scaled_loss = loss / args.gradient_accumulation_steps
sync_and_step = step % args.gradient_accumulation_steps == 0
gradient_synchronization_context = (
model.no_sync() if IS_DDP and not sync_and_step else nullcontext()
)
with gradient_synchronization_context:
scaled_loss.backward()
total_cross_entropy += loss.item()
if sync_and_step:
norm = clip_grad_norm_(model.parameters(), args.max_gradient_norm)
optimizer.step()
optimizer.zero_grad(set_to_none=True)
total_gradient_norm += norm.item()
total_steps += 1
total_batches += 1
if IS_MASTER:
average_cross_entropy = total_cross_entropy / total_batches
average_gradient_norm = total_gradient_norm / total_steps
logger.add_scalar("cross entropy", average_cross_entropy, epoch)
logger.add_scalar("gradient norm", average_gradient_norm, epoch)
print(
f"Epoch {epoch}:",
f"Cross Entropy: {average_cross_entropy:.5f},",
f"Gradient Norm: {average_gradient_norm:.4f}",
)
if epoch % args.eval_interval == 0 and IS_MASTER:
model.eval()
for x, y in tqdm(test_loader, desc="Testing", leave=False):
x = x.to(args.device, non_blocking=True)
y = y.to(args.device, non_blocking=True)
with torch.no_grad():
y_pred, _ = model.forward(x, None)
perplexity_metric.update(y_pred, y)
perplexity = perplexity_metric.compute()
logger.add_scalar("perplexity", perplexity, epoch)
print(f"Perplexity: {perplexity:.3f}")
perplexity_metric.reset()
model.train()
if epoch % args.checkpoint_interval == 0 and IS_MASTER:
checkpoint = {
"epoch": epoch,
"model_args": model_args,
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"token_encoding": args.token_encoding,
}
torch.save(checkpoint, args.checkpoint_path)
print("Checkpoint saved")
if IS_DDP:
ddp_cleanup()
print("Done!")
def register_signal_handlers():
signal.signal(signal.SIGINT, shutdown)
signal.signal(signal.SIGTERM, shutdown)
def shutdown(signum, frame):
print("Hold on, attempting to exit gracefully")
if IS_DDP:
ddp_cleanup()
sys.exit(0)
def ddp_cleanup():
destroy_process_group()
if __name__ == "__main__":
main()