import numpy as np # Calculate cross object of two 3D vectors. def _fast_cross(a, b): return np.concatenate([ a[...,1:2]*b[...,2:3] - a[...,2:3]*b[...,1:2], a[...,2:3]*b[...,0:1] - a[...,0:1]*b[...,2:3], a[...,0:1]*b[...,1:2] - a[...,1:2]*b[...,0:1]], axis=-1) # Make origin quaternions (No rotations) def eye(shape, dtype=np.float32): return np.ones(list(shape) + [4], dtype=dtype) * np.asarray([1, 0, 0, 0], dtype=dtype) # Return norm of quaternions def length(x): return np.sqrt(np.sum(x * x, axis=-1)) # Make unit quaternions def normalize(x, eps=1e-8): return x / (length(x)[...,None] + eps) def abs(x): return np.where(x[...,0:1] > 0.0, x, -x) # Calculate inverse rotations def inv(q): return np.array([1, -1, -1, -1], dtype=np.float32) * q # Calculate the dot product of two quaternions def dot(x, y): return np.sum(x * y, axis=-1)[...,None] if x.ndim > 1 else np.sum(x * y, axis=-1) # Multiply two quaternions (return rotations). def mul(x, y): x0, x1, x2, x3 = x[..., 0:1], x[..., 1:2], x[..., 2:3], x[..., 3:4] y0, y1, y2, y3 = y[..., 0:1], y[..., 1:2], y[..., 2:3], y[..., 3:4] return np.concatenate([ y0 * x0 - y1 * x1 - y2 * x2 - y3 * x3, y0 * x1 + y1 * x0 - y2 * x3 + y3 * x2, y0 * x2 + y1 * x3 + y2 * x0 - y3 * x1, y0 * x3 - y1 * x2 + y2 * x1 + y3 * x0], axis=-1) def inv_mul(x, y): return mul(inv(x), y) def mul_inv(x, y): return mul(x, inv(y)) # Multiply quaternions and vectors (return vectors). def mul_vec(q, x): t = 2.0 * _fast_cross(q[..., 1:], x) return x + q[..., 0][..., None] * t + _fast_cross(q[..., 1:], t) def inv_mul_vec(q, x): return mul_vec(inv(q), x) def unroll(x): y = x.copy() for i in range(1, len(x)): d0 = np.sum( y[i] * y[i-1], axis=-1) d1 = np.sum(-y[i] * y[i-1], axis=-1) y[i][d0 < d1] = -y[i][d0 < d1] return y # Calculate quaternions between two 3D vectors (x to y). def between(x, y): return np.concatenate([ np.sqrt(np.sum(x*x, axis=-1) * np.sum(y*y, axis=-1))[...,None] + np.sum(x * y, axis=-1)[...,None], _fast_cross(x, y)], axis=-1) def log(x, eps=1e-5): length = np.sqrt(np.sum(np.square(x[...,1:]), axis=-1))[...,None] halfangle = np.where(length < eps, np.ones_like(length), np.arctan2(length, x[...,0:1]) / length) return halfangle * x[...,1:] def exp(x, eps=1e-5): halfangle = np.sqrt(np.sum(np.square(x), axis=-1))[...,None] c = np.where(halfangle < eps, np.ones_like(halfangle), np.cos(halfangle)) s = np.where(halfangle < eps, np.ones_like(halfangle), np.sinc(halfangle / np.pi)) return np.concatenate([c, s * x], axis=-1) # Calculate global space rotations and positions from local space. def fk(lrot, lpos, parents): gp, gr = [lpos[...,:1,:]], [lrot[...,:1,:]] for i in range(1, len(parents)): gp.append(mul_vec(gr[parents[i]], lpos[...,i:i+1,:]) + gp[parents[i]]) gr.append(mul (gr[parents[i]], lrot[...,i:i+1,:])) return np.concatenate(gr, axis=-2), np.concatenate(gp, axis=-2) def fk_rot(lrot, parents): gr = [lrot[...,:1,:]] for i in range(1, len(parents)): gr.append(mul(gr[parents[i]], lrot[...,i:i+1,:])) return np.concatenate(gr, axis=-2) # Calculate local space rotations and positions from global space. def ik(grot, gpos, parents): return ( np.concatenate([ grot[...,:1,:], mul(inv(grot[...,parents[1:],:]), grot[...,1:,:]), ], axis=-2), np.concatenate([ gpos[...,:1,:], mul_vec( inv(grot[...,parents[1:],:]), gpos[...,1:,:] - gpos[...,parents[1:],:]), ], axis=-2)) def ik_rot(grot, parents): return np.concatenate([grot[...,:1,:], mul(inv(grot[...,parents[1:],:]), grot[...,1:,:]), ], axis=-2) def fk_vel(lrot, lpos, lvel, lang, parents): gp, gr, gv, ga = [lpos[...,:1,:]], [lrot[...,:1,:]], [lvel[...,:1,:]], [lang[...,:1,:]] for i in range(1, len(parents)): gp.append(mul_vec(gr[parents[i]], lpos[...,i:i+1,:]) + gp[parents[i]]) gr.append(mul (gr[parents[i]], lrot[...,i:i+1,:])) gv.append(mul_vec(gr[parents[i]], lvel[...,i:i+1,:]) + _fast_cross(ga[parents[i]], mul_vec(gr[parents[i]], lpos[...,i:i+1,:])) + gv[parents[i]]) ga.append(mul_vec(gr[parents[i]], lang[...,i:i+1,:]) + ga[parents[i]]) return ( np.concatenate(gr, axis=-2), np.concatenate(gp, axis=-2), np.concatenate(gv, axis=-2), np.concatenate(ga, axis=-2)) # Linear Interpolation of two vectors def lerp(x, y, t): return (1 - t) * x + t * y # LERP of quaternions def quat_lerp(x, y, t): return normalize(lerp(x, y, t)) # Spherical linear interpolation of quaternions def slerp(x, y, t): if t == 0: return x elif t == 1: return y if dot(x, y) < 0: y = - y ca = dot(x, y) theta = np.arccos(np.clip(ca, 0, 1)) r = normalize(y - x * ca) return x * np.cos(theta * t) + r * np.sin(theta * t) ################################################### # Calculate other rotations from other quaternions. ################################################### # Calculate euler angles from quaternions. def to_euler(x, order='zyx'): q0 = x[...,0:1] q1 = x[...,1:2] q2 = x[...,2:3] q3 = x[...,3:4] if order == 'zyx': return np.concatenate([ np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)), np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1,1)), np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))], axis=-1) elif order == 'yzx': return np.concatenate([ np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0), np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1,1)), np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0)],axis=-1) elif order == 'zxy': return np.concatenate([ np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3), np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1)), np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)], axis=-1) elif order == 'yxz': return np.concatenate([ np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3), np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1)), np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)], axis=-1) else: raise NotImplementedError('Cannot convert from ordering %s' % order) # Calculate rotation matrix from quaternions. def to_xform(x): qw, qx, qy, qz = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4] x2, y2, z2 = qx + qx, qy + qy, qz + qz xx, yy, wx = qx * x2, qy * y2, qw * x2 xy, yz, wy = qx * y2, qy * z2, qw * y2 xz, zz, wz = qx * z2, qz * z2, qw * z2 return np.concatenate([ np.concatenate([1.0 - (yy + zz), xy - wz, xz + wy], axis=-1)[...,None,:], np.concatenate([xy + wz, 1.0 - (xx + zz), yz - wx], axis=-1)[...,None,:], np.concatenate([xz - wy, yz + wx, 1.0 - (xx + yy)], axis=-1)[...,None,:], ], axis=-2) # Calculate 6d orthogonal rotation representation (ortho6d) from quaternions. # https://github.com/papagina/RotationContinuity def to_xform_xy(x): qw, qx, qy, qz = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4] x2, y2, z2 = qx + qx, qy + qy, qz + qz xx, yy, wx = qx * x2, qy * y2, qw * x2 xy, yz, wy = qx * y2, qy * z2, qw * y2 xz, zz, wz = qx * z2, qz * z2, qw * z2 return np.concatenate([ np.concatenate([1.0 - (yy + zz), xy - wz], axis=-1)[...,None,:], np.concatenate([xy + wz, 1.0 - (xx + zz)], axis=-1)[...,None,:], np.concatenate([xz - wy, yz + wx], axis=-1)[...,None,:], ], axis=-2) # Calculate scaled angle axis from quaternions. def to_scaled_angle_axis(x, eps=1e-5): return 2.0 * log(x, eps) ############################################# # Calculate quaternions from other rotations. ############################################# # Calculate quaternions from axis angles. def from_angle_axis(angle, axis): c = np.cos(angle / 2.0)[..., None] s = np.sin(angle / 2.0)[..., None] q = np.concatenate([c, s * axis], axis=-1) return q # Calculate quaternions from axis-angle. def from_axis_angle(rots): angle = np.linalg.norm(rots, axis=-1) axis = rots / angle[...,None] return from_angle_axis(angle, axis) # Calculate quaternions from euler angles. def from_euler(e, order='zyx'): axis = { 'x': np.asarray([1, 0, 0], dtype=np.float32), 'y': np.asarray([0, 1, 0], dtype=np.float32), 'z': np.asarray([0, 0, 1], dtype=np.float32)} q0 = from_angle_axis(e[..., 0], axis[order[0]]) q1 = from_angle_axis(e[..., 1], axis[order[1]]) q2 = from_angle_axis(e[..., 2], axis[order[2]]) return mul(q0, mul(q1, q2)) # Calculate quaternions from rotation matrix. def from_xform(ts): return normalize( np.where((ts[...,2,2] < 0.0)[...,None], np.where((ts[...,0,0] > ts[...,1,1])[...,None], np.concatenate([ (ts[...,2,1]-ts[...,1,2])[...,None], (1.0 + ts[...,0,0] - ts[...,1,1] - ts[...,2,2])[...,None], (ts[...,1,0]+ts[...,0,1])[...,None], (ts[...,0,2]+ts[...,2,0])[...,None]], axis=-1), np.concatenate([ (ts[...,0,2]-ts[...,2,0])[...,None], (ts[...,1,0]+ts[...,0,1])[...,None], (1.0 - ts[...,0,0] + ts[...,1,1] - ts[...,2,2])[...,None], (ts[...,2,1]+ts[...,1,2])[...,None]], axis=-1)), np.where((ts[...,0,0] < -ts[...,1,1])[...,None], np.concatenate([ (ts[...,1,0]-ts[...,0,1])[...,None], (ts[...,0,2]+ts[...,2,0])[...,None], (ts[...,2,1]+ts[...,1,2])[...,None], (1.0 - ts[...,0,0] - ts[...,1,1] + ts[...,2,2])[...,None]], axis=-1), np.concatenate([ (1.0 + ts[...,0,0] + ts[...,1,1] + ts[...,2,2])[...,None], (ts[...,2,1]-ts[...,1,2])[...,None], (ts[...,0,2]-ts[...,2,0])[...,None], (ts[...,1,0]-ts[...,0,1])[...,None]], axis=-1)))) # Calculate quaternions from ortho6d. def from_xform_xy(x): c2 = _fast_cross(x[...,0], x[...,1]) c2 = c2 / np.sqrt(np.sum(np.square(c2), axis=-1))[...,None] c1 = _fast_cross(c2, x[...,0]) c1 = c1 / np.sqrt(np.sum(np.square(c1), axis=-1))[...,None] c0 = x[...,0] return from_xform(np.concatenate([ c0[...,None], c1[...,None], c2[...,None]], axis=-1)) # Calculate quaternions from scaled angle axis. def from_scaled_angle_axis(x, eps=1e-5): return exp(x / 2.0, eps)