|
import os |
|
import sys |
|
import numpy as np |
|
import torch |
|
import argparse |
|
|
|
from os.path import join as pjoin |
|
|
|
|
|
|
|
from visualization.InverseKinematics import JacobianInverseKinematics, BasicInverseKinematics |
|
|
|
|
|
|
|
|
|
def softmax(x, **kw): |
|
softness = kw.pop("softness", 1.0) |
|
maxi, mini = np.max(x, **kw), np.min(x, **kw) |
|
return maxi + np.log(softness + np.exp(mini - maxi)) |
|
|
|
|
|
def softmin(x, **kw): |
|
return -softmax(-x, **kw) |
|
|
|
|
|
def alpha(t): |
|
return 2.0 * t * t * t - 3.0 * t * t + 1 |
|
|
|
|
|
def lerp(a, l, r): |
|
return (1 - a) * l + a * r |
|
|
|
def remove_fs_old(anim, glb, foot_contact, fid_l=(3, 4), fid_r=(7, 8), interp_length=5, force_on_floor=True): |
|
|
|
scale = 1. |
|
|
|
|
|
height_thres = [0.06, 0.03] |
|
if foot_contact is None: |
|
def foot_detect(positions, velfactor, heightfactor): |
|
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 |
|
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 |
|
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 |
|
feet_l_h = positions[:-1, fid_l, 1] |
|
feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float) |
|
|
|
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 |
|
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 |
|
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 |
|
feet_r_h = positions[:-1, fid_r, 1] |
|
|
|
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float) |
|
|
|
return feet_l, feet_r |
|
|
|
|
|
|
|
feet_vel_thre = np.array([0.05, 0.2]) |
|
|
|
feet_h_thre = np.array(height_thres) * scale |
|
feet_l, feet_r = foot_detect(glb, velfactor=feet_vel_thre, heightfactor=feet_h_thre) |
|
foot = np.concatenate([feet_l, feet_r], axis=-1).transpose(1, 0) |
|
foot = np.concatenate([foot, foot[:, -1:]], axis=-1) |
|
else: |
|
foot = foot_contact.transpose(1, 0) |
|
|
|
T = len(glb) |
|
|
|
fid = list(fid_l) + list(fid_r) |
|
fid_l, fid_r = np.array(fid_l), np.array(fid_r) |
|
foot_heights = np.minimum(glb[:, fid_l, 1], |
|
glb[:, fid_r, 1]).min(axis=1) |
|
|
|
|
|
sort_height = np.sort(foot_heights) |
|
temp_len = len(sort_height) |
|
floor_height = np.mean(sort_height[int(0.25*temp_len):int(0.5*temp_len)]) |
|
if floor_height > 0.5: |
|
floor_height = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
glb[:, :, 1] -= floor_height |
|
anim.positions[:, 0, 1] -= floor_height |
|
for i, fidx in enumerate(fid): |
|
fixed = foot[i] |
|
|
|
""" |
|
for t in range(T): |
|
glb[t, fidx][1] = max(glb[t, fidx][1], 0.25) |
|
""" |
|
|
|
s = 0 |
|
while s < T: |
|
while s < T and fixed[s] == 0: |
|
s += 1 |
|
if s >= T: |
|
break |
|
t = s |
|
avg = glb[t, fidx].copy() |
|
while t + 1 < T and fixed[t + 1] == 1: |
|
t += 1 |
|
avg += glb[t, fidx].copy() |
|
avg /= (t - s + 1) |
|
|
|
if force_on_floor: |
|
avg[1] = 0.0 |
|
|
|
for j in range(s, t + 1): |
|
glb[j, fidx] = avg.copy() |
|
|
|
s = t + 1 |
|
|
|
for s in range(T): |
|
if fixed[s] == 1: |
|
continue |
|
l, r = None, None |
|
consl, consr = False, False |
|
for k in range(interp_length): |
|
if s - k - 1 < 0: |
|
break |
|
if fixed[s - k - 1]: |
|
l = s - k - 1 |
|
consl = True |
|
break |
|
for k in range(interp_length): |
|
if s + k + 1 >= T: |
|
break |
|
if fixed[s + k + 1]: |
|
r = s + k + 1 |
|
consr = True |
|
break |
|
|
|
if not consl and not consr: |
|
continue |
|
if consl and consr: |
|
litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)), |
|
glb[s, fidx], glb[l, fidx]) |
|
ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)), |
|
glb[s, fidx], glb[r, fidx]) |
|
itp = lerp(alpha(1.0 * (s - l + 1) / (r - l + 1)), |
|
ritp, litp) |
|
glb[s, fidx] = itp.copy() |
|
continue |
|
if consl: |
|
litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)), |
|
glb[s, fidx], glb[l, fidx]) |
|
glb[s, fidx] = litp.copy() |
|
continue |
|
if consr: |
|
ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)), |
|
glb[s, fidx], glb[r, fidx]) |
|
glb[s, fidx] = ritp.copy() |
|
|
|
targetmap = {} |
|
for j in range(glb.shape[1]): |
|
targetmap[j] = glb[:, j] |
|
|
|
|
|
|
|
|
|
|
|
ik = JacobianInverseKinematics(anim, targetmap, iterations=30, damping=5, recalculate=False, silent=True) |
|
|
|
anim = ik() |
|
return anim |
|
|
|
|
|
|
|
def remove_fs(glb, foot_contact, fid_l=(3, 4), fid_r=(7, 8), interp_length=5, force_on_floor=True): |
|
|
|
scale = 1. |
|
|
|
|
|
height_thres = [0.06, 0.03] |
|
if foot_contact is None: |
|
def foot_detect(positions, velfactor, heightfactor): |
|
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 |
|
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 |
|
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 |
|
feet_l_h = positions[:-1, fid_l, 1] |
|
feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float) |
|
|
|
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 |
|
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 |
|
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 |
|
feet_r_h = positions[:-1, fid_r, 1] |
|
|
|
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float) |
|
|
|
return feet_l, feet_r |
|
|
|
|
|
|
|
feet_vel_thre = np.array([0.05, 0.2]) |
|
|
|
feet_h_thre = np.array(height_thres) * scale |
|
feet_l, feet_r = foot_detect(glb, velfactor=feet_vel_thre, heightfactor=feet_h_thre) |
|
foot = np.concatenate([feet_l, feet_r], axis=-1).transpose(1, 0) |
|
foot = np.concatenate([foot, foot[:, -1:]], axis=-1) |
|
else: |
|
foot = foot_contact.transpose(1, 0) |
|
|
|
T = len(glb) |
|
|
|
fid = list(fid_l) + list(fid_r) |
|
fid_l, fid_r = np.array(fid_l), np.array(fid_r) |
|
foot_heights = np.minimum(glb[:, fid_l, 1], |
|
glb[:, fid_r, 1]).min(axis=1) |
|
|
|
|
|
sort_height = np.sort(foot_heights) |
|
temp_len = len(sort_height) |
|
floor_height = np.mean(sort_height[int(0.25*temp_len):int(0.5*temp_len)]) |
|
if floor_height > 0.5: |
|
floor_height = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
glb[:, :, 1] -= floor_height |
|
|
|
for i, fidx in enumerate(fid): |
|
fixed = foot[i] |
|
|
|
""" |
|
for t in range(T): |
|
glb[t, fidx][1] = max(glb[t, fidx][1], 0.25) |
|
""" |
|
|
|
s = 0 |
|
while s < T: |
|
while s < T and fixed[s] == 0: |
|
s += 1 |
|
if s >= T: |
|
break |
|
t = s |
|
avg = glb[t, fidx].copy() |
|
while t + 1 < T and fixed[t + 1] == 1: |
|
t += 1 |
|
avg += glb[t, fidx].copy() |
|
avg /= (t - s + 1) |
|
|
|
if force_on_floor: |
|
avg[1] = 0.0 |
|
|
|
for j in range(s, t + 1): |
|
glb[j, fidx] = avg.copy() |
|
|
|
s = t + 1 |
|
|
|
for s in range(T): |
|
if fixed[s] == 1: |
|
continue |
|
l, r = None, None |
|
consl, consr = False, False |
|
for k in range(interp_length): |
|
if s - k - 1 < 0: |
|
break |
|
if fixed[s - k - 1]: |
|
l = s - k - 1 |
|
consl = True |
|
break |
|
for k in range(interp_length): |
|
if s + k + 1 >= T: |
|
break |
|
if fixed[s + k + 1]: |
|
r = s + k + 1 |
|
consr = True |
|
break |
|
|
|
if not consl and not consr: |
|
continue |
|
if consl and consr: |
|
litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)), |
|
glb[s, fidx], glb[l, fidx]) |
|
ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)), |
|
glb[s, fidx], glb[r, fidx]) |
|
itp = lerp(alpha(1.0 * (s - l + 1) / (r - l + 1)), |
|
ritp, litp) |
|
glb[s, fidx] = itp.copy() |
|
continue |
|
if consl: |
|
litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)), |
|
glb[s, fidx], glb[l, fidx]) |
|
glb[s, fidx] = litp.copy() |
|
continue |
|
if consr: |
|
ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)), |
|
glb[s, fidx], glb[r, fidx]) |
|
glb[s, fidx] = ritp.copy() |
|
|
|
targetmap = {} |
|
for j in range(glb.shape[1]): |
|
targetmap[j] = glb[:, j] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return glb |
|
|
|
|
|
def compute_foot_sliding(foot_data, traj_qpos, offseth): |
|
foot = np.array(foot_data).copy() |
|
offseth = np.mean(foot[:10, 1]) |
|
foot[:, 1] -= offseth |
|
foot_disp = np.linalg.norm(foot[1:, [0, 2]] - foot[:-1, [0, 2]], axis=1) |
|
traj_qpos[:, 1] -= offseth |
|
seq_len = len(traj_qpos) |
|
H = 0.05 |
|
y_threshold = 0.65 |
|
y = traj_qpos[1:, 1] |
|
|
|
foot_avg = (foot[:-1, 1] + foot[1:, 1]) / 2 |
|
subset = np.logical_and(foot_avg < H, y > y_threshold) |
|
|
|
|
|
sliding_stats = np.abs(foot_disp * (2 - 2 ** (foot_avg / H)))[subset] |
|
sliding = np.sum(sliding_stats) / seq_len * 1000 |
|
return sliding, sliding_stats |