File size: 11,228 Bytes
823807d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import numpy as np
# Calculate cross object of two 3D vectors.
def _fast_cross(a, b):
return np.concatenate([
a[...,1:2]*b[...,2:3] - a[...,2:3]*b[...,1:2],
a[...,2:3]*b[...,0:1] - a[...,0:1]*b[...,2:3],
a[...,0:1]*b[...,1:2] - a[...,1:2]*b[...,0:1]], axis=-1)
# Make origin quaternions (No rotations)
def eye(shape, dtype=np.float32):
return np.ones(list(shape) + [4], dtype=dtype) * np.asarray([1, 0, 0, 0], dtype=dtype)
# Return norm of quaternions
def length(x):
return np.sqrt(np.sum(x * x, axis=-1))
# Make unit quaternions
def normalize(x, eps=1e-8):
return x / (length(x)[...,None] + eps)
def abs(x):
return np.where(x[...,0:1] > 0.0, x, -x)
# Calculate inverse rotations
def inv(q):
return np.array([1, -1, -1, -1], dtype=np.float32) * q
# Calculate the dot product of two quaternions
def dot(x, y):
return np.sum(x * y, axis=-1)[...,None] if x.ndim > 1 else np.sum(x * y, axis=-1)
# Multiply two quaternions (return rotations).
def mul(x, y):
x0, x1, x2, x3 = x[..., 0:1], x[..., 1:2], x[..., 2:3], x[..., 3:4]
y0, y1, y2, y3 = y[..., 0:1], y[..., 1:2], y[..., 2:3], y[..., 3:4]
return np.concatenate([
y0 * x0 - y1 * x1 - y2 * x2 - y3 * x3,
y0 * x1 + y1 * x0 - y2 * x3 + y3 * x2,
y0 * x2 + y1 * x3 + y2 * x0 - y3 * x1,
y0 * x3 - y1 * x2 + y2 * x1 + y3 * x0], axis=-1)
def inv_mul(x, y):
return mul(inv(x), y)
def mul_inv(x, y):
return mul(x, inv(y))
# Multiply quaternions and vectors (return vectors).
def mul_vec(q, x):
t = 2.0 * _fast_cross(q[..., 1:], x)
return x + q[..., 0][..., None] * t + _fast_cross(q[..., 1:], t)
def inv_mul_vec(q, x):
return mul_vec(inv(q), x)
def unroll(x):
y = x.copy()
for i in range(1, len(x)):
d0 = np.sum( y[i] * y[i-1], axis=-1)
d1 = np.sum(-y[i] * y[i-1], axis=-1)
y[i][d0 < d1] = -y[i][d0 < d1]
return y
# Calculate quaternions between two 3D vectors (x to y).
def between(x, y):
return np.concatenate([
np.sqrt(np.sum(x*x, axis=-1) * np.sum(y*y, axis=-1))[...,None] +
np.sum(x * y, axis=-1)[...,None],
_fast_cross(x, y)], axis=-1)
def log(x, eps=1e-5):
length = np.sqrt(np.sum(np.square(x[...,1:]), axis=-1))[...,None]
halfangle = np.where(length < eps, np.ones_like(length), np.arctan2(length, x[...,0:1]) / length)
return halfangle * x[...,1:]
def exp(x, eps=1e-5):
halfangle = np.sqrt(np.sum(np.square(x), axis=-1))[...,None]
c = np.where(halfangle < eps, np.ones_like(halfangle), np.cos(halfangle))
s = np.where(halfangle < eps, np.ones_like(halfangle), np.sinc(halfangle / np.pi))
return np.concatenate([c, s * x], axis=-1)
# Calculate global space rotations and positions from local space.
def fk(lrot, lpos, parents):
gp, gr = [lpos[...,:1,:]], [lrot[...,:1,:]]
for i in range(1, len(parents)):
gp.append(mul_vec(gr[parents[i]], lpos[...,i:i+1,:]) + gp[parents[i]])
gr.append(mul (gr[parents[i]], lrot[...,i:i+1,:]))
return np.concatenate(gr, axis=-2), np.concatenate(gp, axis=-2)
def fk_rot(lrot, parents):
gr = [lrot[...,:1,:]]
for i in range(1, len(parents)):
gr.append(mul(gr[parents[i]], lrot[...,i:i+1,:]))
return np.concatenate(gr, axis=-2)
# Calculate local space rotations and positions from global space.
def ik(grot, gpos, parents):
return (
np.concatenate([
grot[...,:1,:],
mul(inv(grot[...,parents[1:],:]), grot[...,1:,:]),
], axis=-2),
np.concatenate([
gpos[...,:1,:],
mul_vec(
inv(grot[...,parents[1:],:]),
gpos[...,1:,:] - gpos[...,parents[1:],:]),
], axis=-2))
def ik_rot(grot, parents):
return np.concatenate([grot[...,:1,:],
mul(inv(grot[...,parents[1:],:]), grot[...,1:,:]),
], axis=-2)
def fk_vel(lrot, lpos, lvel, lang, parents):
gp, gr, gv, ga = [lpos[...,:1,:]], [lrot[...,:1,:]], [lvel[...,:1,:]], [lang[...,:1,:]]
for i in range(1, len(parents)):
gp.append(mul_vec(gr[parents[i]], lpos[...,i:i+1,:]) + gp[parents[i]])
gr.append(mul (gr[parents[i]], lrot[...,i:i+1,:]))
gv.append(mul_vec(gr[parents[i]], lvel[...,i:i+1,:]) +
_fast_cross(ga[parents[i]], mul_vec(gr[parents[i]], lpos[...,i:i+1,:])) +
gv[parents[i]])
ga.append(mul_vec(gr[parents[i]], lang[...,i:i+1,:]) + ga[parents[i]])
return (
np.concatenate(gr, axis=-2),
np.concatenate(gp, axis=-2),
np.concatenate(gv, axis=-2),
np.concatenate(ga, axis=-2))
# Linear Interpolation of two vectors
def lerp(x, y, t):
return (1 - t) * x + t * y
# LERP of quaternions
def quat_lerp(x, y, t):
return normalize(lerp(x, y, t))
# Spherical linear interpolation of quaternions
def slerp(x, y, t):
if t == 0:
return x
elif t == 1:
return y
if dot(x, y) < 0:
y = - y
ca = dot(x, y)
theta = np.arccos(np.clip(ca, 0, 1))
r = normalize(y - x * ca)
return x * np.cos(theta * t) + r * np.sin(theta * t)
###################################################
# Calculate other rotations from other quaternions.
###################################################
# Calculate euler angles from quaternions.
def to_euler(x, order='zyx'):
q0 = x[...,0:1]
q1 = x[...,1:2]
q2 = x[...,2:3]
q3 = x[...,3:4]
if order == 'zyx':
return np.concatenate([
np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)),
np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1,1)),
np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))], axis=-1)
elif order == 'yzx':
return np.concatenate([
np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0),
np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1,1)),
np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0)],axis=-1)
elif order == 'zxy':
return np.concatenate([
np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3),
np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1)),
np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)], axis=-1)
elif order == 'yxz':
return np.concatenate([
np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3),
np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1)),
np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)], axis=-1)
else:
raise NotImplementedError('Cannot convert from ordering %s' % order)
# Calculate rotation matrix from quaternions.
def to_xform(x):
qw, qx, qy, qz = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4]
x2, y2, z2 = qx + qx, qy + qy, qz + qz
xx, yy, wx = qx * x2, qy * y2, qw * x2
xy, yz, wy = qx * y2, qy * z2, qw * y2
xz, zz, wz = qx * z2, qz * z2, qw * z2
return np.concatenate([
np.concatenate([1.0 - (yy + zz), xy - wz, xz + wy], axis=-1)[...,None,:],
np.concatenate([xy + wz, 1.0 - (xx + zz), yz - wx], axis=-1)[...,None,:],
np.concatenate([xz - wy, yz + wx, 1.0 - (xx + yy)], axis=-1)[...,None,:],
], axis=-2)
# Calculate 6d orthogonal rotation representation (ortho6d) from quaternions.
# https://github.com/papagina/RotationContinuity
def to_xform_xy(x):
qw, qx, qy, qz = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4]
x2, y2, z2 = qx + qx, qy + qy, qz + qz
xx, yy, wx = qx * x2, qy * y2, qw * x2
xy, yz, wy = qx * y2, qy * z2, qw * y2
xz, zz, wz = qx * z2, qz * z2, qw * z2
return np.concatenate([
np.concatenate([1.0 - (yy + zz), xy - wz], axis=-1)[...,None,:],
np.concatenate([xy + wz, 1.0 - (xx + zz)], axis=-1)[...,None,:],
np.concatenate([xz - wy, yz + wx], axis=-1)[...,None,:],
], axis=-2)
# Calculate scaled angle axis from quaternions.
def to_scaled_angle_axis(x, eps=1e-5):
return 2.0 * log(x, eps)
#############################################
# Calculate quaternions from other rotations.
#############################################
# Calculate quaternions from axis angles.
def from_angle_axis(angle, axis):
c = np.cos(angle / 2.0)[..., None]
s = np.sin(angle / 2.0)[..., None]
q = np.concatenate([c, s * axis], axis=-1)
return q
# Calculate quaternions from axis-angle.
def from_axis_angle(rots):
angle = np.linalg.norm(rots, axis=-1)
axis = rots / angle[...,None]
return from_angle_axis(angle, axis)
# Calculate quaternions from euler angles.
def from_euler(e, order='zyx'):
axis = {
'x': np.asarray([1, 0, 0], dtype=np.float32),
'y': np.asarray([0, 1, 0], dtype=np.float32),
'z': np.asarray([0, 0, 1], dtype=np.float32)}
q0 = from_angle_axis(e[..., 0], axis[order[0]])
q1 = from_angle_axis(e[..., 1], axis[order[1]])
q2 = from_angle_axis(e[..., 2], axis[order[2]])
return mul(q0, mul(q1, q2))
# Calculate quaternions from rotation matrix.
def from_xform(ts):
return normalize(
np.where((ts[...,2,2] < 0.0)[...,None],
np.where((ts[...,0,0] > ts[...,1,1])[...,None],
np.concatenate([
(ts[...,2,1]-ts[...,1,2])[...,None],
(1.0 + ts[...,0,0] - ts[...,1,1] - ts[...,2,2])[...,None],
(ts[...,1,0]+ts[...,0,1])[...,None],
(ts[...,0,2]+ts[...,2,0])[...,None]], axis=-1),
np.concatenate([
(ts[...,0,2]-ts[...,2,0])[...,None],
(ts[...,1,0]+ts[...,0,1])[...,None],
(1.0 - ts[...,0,0] + ts[...,1,1] - ts[...,2,2])[...,None],
(ts[...,2,1]+ts[...,1,2])[...,None]], axis=-1)),
np.where((ts[...,0,0] < -ts[...,1,1])[...,None],
np.concatenate([
(ts[...,1,0]-ts[...,0,1])[...,None],
(ts[...,0,2]+ts[...,2,0])[...,None],
(ts[...,2,1]+ts[...,1,2])[...,None],
(1.0 - ts[...,0,0] - ts[...,1,1] + ts[...,2,2])[...,None]], axis=-1),
np.concatenate([
(1.0 + ts[...,0,0] + ts[...,1,1] + ts[...,2,2])[...,None],
(ts[...,2,1]-ts[...,1,2])[...,None],
(ts[...,0,2]-ts[...,2,0])[...,None],
(ts[...,1,0]-ts[...,0,1])[...,None]], axis=-1))))
# Calculate quaternions from ortho6d.
def from_xform_xy(x):
c2 = _fast_cross(x[...,0], x[...,1])
c2 = c2 / np.sqrt(np.sum(np.square(c2), axis=-1))[...,None]
c1 = _fast_cross(c2, x[...,0])
c1 = c1 / np.sqrt(np.sum(np.square(c1), axis=-1))[...,None]
c0 = x[...,0]
return from_xform(np.concatenate([
c0[...,None],
c1[...,None],
c2[...,None]], axis=-1))
# Calculate quaternions from scaled angle axis.
def from_scaled_angle_axis(x, eps=1e-5):
return exp(x / 2.0, eps) |