File size: 14,282 Bytes
823807d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
from functools import partial
import os
import torch
import numpy as np
import gradio as gr
import random
import shutil
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
import os
from os.path import join as pjoin
import torch.nn.functional as F
from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer
from models.vq.model import RVQVAE, LengthEstimator
from options.hgdemo_option import EvalT2MOptions
from utils.get_opt import get_opt
from utils.fixseed import fixseed
from visualization.joints2bvh import Joint2BVHConvertor
from torch.distributions.categorical import Categorical
from utils.motion_process import recover_from_ric
from utils.plot_script import plot_3d_motion
from utils.paramUtil import t2m_kinematic_chain
from gen_t2m import load_vq_model, load_res_model, load_trans_model, load_len_estimator
clip_version = 'ViT-B/32'
WEBSITE = """
<div class="embed_hidden">
<h1 style='text-align: center'> MoMask: Generative Masked Modeling of 3D Human Motions </h1>
<h2 style='text-align: center'>
<a href="https://ericguo5513.github.io" target="_blank"><nobr>Chuan Guo*</nobr></a>  
<a href="https://yxmu.foo/" target="_blank"><nobr>Yuxuan Mu*</nobr></a>  
<a href="https://scholar.google.com/citations?user=w4e-j9sAAAAJ&hl=en" target="_blank"><nobr>Muhammad Gohar Javed*</nobr></a>  
<a href="https://sites.google.com/site/senwang1312home/" target="_blank"><nobr>Sen Wang</nobr></a>  
<a href="https://www.ece.ualberta.ca/~lcheng5/" target="_blank"><nobr>Li Cheng</nobr></a>
</h2>
<h2 style='text-align: center'>
<nobr>arXiv 2023</nobr>
</h2>
<h3 style="text-align:center;">
<a target="_blank" href="https://arxiv.org/abs/2312.00063"> <button type="button" class="btn btn-primary btn-lg"> Paper </button></a>  
<a target="_blank" href="https://github.com/EricGuo5513/momask-codes"> <button type="button" class="btn btn-primary btn-lg"> Code </button></a>  
<a target="_blank" href="https://ericguo5513.github.io/momask/"> <button type="button" class="btn btn-primary btn-lg"> Webpage </button></a>  
<a target="_blank" href="https://ericguo5513.github.io/source_files/momask_2023_bib.txt"> <button type="button" class="btn btn-primary btn-lg"> BibTex </button></a>
</h3>
<h3> Description </h3>
<p>
π₯π₯π₯ This space presents an interactive demo for <a href='https://ericguo5513.github.io/momask/' target='_blank'><b>MoMask</b></a>, a method for text-to-motion generation!!! It generates human motions (skeletal animations) based on your descriptions. To gain a better understanding of our work, you could try the provided examples first. π₯π₯π₯
</p>
<p>
πππ In addition, we provide a link to download the generated human skeletal motion in <b>BVH</b> file format, compatible with CG software such as Blender!!! πππ
</p>
<p>
πππ If you find this demo interesting, we would appreciate your star on our <a href="https://github.com/EricGuo5513/momask-codes" target="_blank">github</a>. More details could be found on our <a href='https://ericguo5513.github.io/momask/' target='_blank'>webpage</a>. π«Άπ«Άπ«Ά
</p>
<p>
If you have any issues on this space or feature requests, we warmly welcome you to contact us through our <a href="https://github.com/EricGuo5513/momask-codes/issues" target="_blank">github repo</a> or <a href="mailto:[email protected]?subject =[MoMask]Feedback&body = Message">email</a>.
</p>
</div>
"""
WEBSITE_bottom = """
<p>
We thanks <a href="https://huggingface.co./spaces/Mathux/TMR" target="_blank">TMR</a> for this cool space template.
</p>
</div>
"""
EXAMPLES = [
"A person is running on a treadmill.", "The person takes 4 steps backwards.",
"A person jumps up and then lands.", "The person was pushed but did not fall.",
"The person does a salsa dance.", "A figure streches it hands and arms above its head.",
"This person kicks with his right leg then jabs several times.",
"A person stands for few seconds and picks up his arms and shakes them.",
"A person walks in a clockwise circle and stops where he began.",
"A man bends down and picks something up with his right hand.",
"A person walks with a limp, their left leg gets injured.",
"A person repeatedly blocks their face with their right arm.",
"The person holds his left foot with his left hand, puts his right foot up and left hand up too.",
"A person stands, crosses left leg in front of the right, lowering themselves until they are sitting, both hands on the floor before standing and uncrossing legs.",
"The man walked forward, spun right on one foot and walked back to his original position.",
"A man is walking forward then steps over an object then continues walking forward.",
]
# Show closest text in the training
# css to make videos look nice
# var(--block-border-color); TODO
CSS = """
.generate_video {
position: relative;
margin-left: auto;
margin-right: auto;
box-shadow: var(--block-shadow);
border-width: var(--block-border-width);
border-color: #000000;
border-radius: var(--block-radius);
background: var(--block-background-fill);
width: 25%;
line-height: var(--line-sm);
}
}
"""
DEFAULT_TEXT = "A person is "
if not os.path.exists("checkpoints/t2m"):
os.system("bash prepare/download_models_demo.sh")
##########################
######Preparing demo######
##########################
parser = EvalT2MOptions()
opt = parser.parse()
fixseed(opt.seed)
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
dim_pose = 263
root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
model_dir = pjoin(root_dir, 'model')
model_opt_path = pjoin(root_dir, 'opt.txt')
model_opt = get_opt(model_opt_path, device=opt.device)
######Loading RVQ######
vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt')
vq_opt = get_opt(vq_opt_path, device=opt.device)
vq_opt.dim_pose = dim_pose
vq_model, vq_opt = load_vq_model(vq_opt)
model_opt.num_tokens = vq_opt.nb_code
model_opt.num_quantizers = vq_opt.num_quantizers
model_opt.code_dim = vq_opt.code_dim
######Loading R-Transformer######
res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt')
res_opt = get_opt(res_opt_path, device=opt.device)
res_model = load_res_model(res_opt, vq_opt, opt)
assert res_opt.vq_name == model_opt.vq_name
######Loading M-Transformer######
t2m_transformer = load_trans_model(model_opt, opt, 'latest.tar')
#####Loading Length Predictor#####
length_estimator = load_len_estimator(model_opt)
t2m_transformer.eval()
vq_model.eval()
res_model.eval()
length_estimator.eval()
res_model.to(opt.device)
t2m_transformer.to(opt.device)
vq_model.to(opt.device)
length_estimator.to(opt.device)
opt.nb_joints = 22
mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'mean.npy'))
std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'std.npy'))
def inv_transform(data):
return data * std + mean
kinematic_chain = t2m_kinematic_chain
converter = Joint2BVHConvertor()
cached_dir = './cached'
uid = 12138
animation_path = pjoin(cached_dir, f'{uid}')
os.makedirs(animation_path, exist_ok=True)
@torch.no_grad()
def generate(
text, uid, motion_length=0, use_ik=True, seed=10107, repeat_times=1,
):
# fixseed(seed)
print(text)
prompt_list = []
length_list = []
est_length = False
prompt_list.append(text)
if motion_length == 0:
est_length = True
else:
length_list.append(motion_length)
if est_length:
print("Since no motion length are specified, we will use estimated motion lengthes!!")
text_embedding = t2m_transformer.encode_text(prompt_list)
pred_dis = length_estimator(text_embedding)
probs = F.softmax(pred_dis, dim=-1) # (b, ntoken)
token_lens = Categorical(probs).sample() # (b, seqlen)
else:
token_lens = torch.LongTensor(length_list) // 4
token_lens = token_lens.to(opt.device).long()
m_length = token_lens * 4
captions = prompt_list
datas = []
for r in range(repeat_times):
mids = t2m_transformer.generate(captions, token_lens,
timesteps=opt.time_steps,
cond_scale=opt.cond_scale,
temperature=opt.temperature,
topk_filter_thres=opt.topkr,
gsample=opt.gumbel_sample)
mids = res_model.generate(mids, captions, token_lens, temperature=1, cond_scale=5)
pred_motions = vq_model.forward_decoder(mids)
pred_motions = pred_motions.detach().cpu().numpy()
data = inv_transform(pred_motions)
ruid = random.randrange(99999)
for k, (caption, joint_data) in enumerate(zip(captions, data)):
animation_path = pjoin(cached_dir, f'{uid}')
os.makedirs(animation_path, exist_ok=True)
joint_data = joint_data[:m_length[k]]
joint = recover_from_ric(torch.from_numpy(joint_data).float(), 22).numpy()
bvh_path = pjoin(animation_path, "sample_repeat%d.bvh" % (r))
save_path = pjoin(animation_path, "sample_repeat%d_%d.mp4"%(r, ruid))
if use_ik:
print("Using IK")
_, joint = converter.convert(joint, filename=bvh_path, iterations=100)
else:
_, joint = converter.convert(joint, filename=bvh_path, iterations=100, foot_ik=False)
plot_3d_motion(save_path, kinematic_chain, joint, title=caption, fps=20)
np.save(pjoin(animation_path, "sample_repeat%d.npy"%(r)), joint)
data_unit = {
"url": pjoin(animation_path, "sample_repeat%d_%d.mp4"%(r, ruid))
}
datas.append(data_unit)
return datas
# HTML component
def get_video_html(data, video_id, width=700, height=700):
url = data["url"]
# class="wrap default svelte-gjihhp hide"
# <div class="contour_video" style="position: absolute; padding: 10px;">
# width="{width}" height="{height}"
video_html = f"""
<h2 style='text-align: center'>
<a href="file/{pjoin(animation_path, "sample_repeat0.bvh")}" download="sample.bvh"><b>BVH Download</b></a>
</h2>
<video class="generate_video" width="{width}" height="{height}" style="center" preload="auto" muted playsinline onpause="this.load()"
autoplay loop disablepictureinpicture id="{video_id}">
<source src="file/{url}" type="video/mp4">
Your browser does not support the video tag.
</video>
"""
return video_html
def generate_component(generate_function, text, motion_len='0', postprocess='IK'):
if text == DEFAULT_TEXT or text == "" or text is None:
return [None for _ in range(1)]
# uid = random.randrange(99999)
try:
motion_len = max(0, min(int(float(motion_len) * 20), 196))
except:
motion_len = 0
use_ik = postprocess == 'IK'
datas = generate_function(text, uid, motion_len, use_ik)
htmls = [get_video_html(data, idx) for idx, data in enumerate(datas)]
return htmls
# LOADING
# DEMO
theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray")
generate_and_show = partial(generate_component, generate)
with gr.Blocks(css=CSS, theme=theme) as demo:
gr.Markdown(WEBSITE)
videos = []
with gr.Row():
with gr.Column(scale=3):
text = gr.Textbox(
show_label=True,
label="Text prompt",
value=DEFAULT_TEXT,
)
with gr.Row():
with gr.Column(scale=1):
motion_len = gr.Textbox(
show_label=True,
label="Motion length (<10s)",
value=0,
info="Specify the motion length; 0 to use the default auto-setting.",
)
with gr.Column(scale=1):
use_ik = gr.Radio(
["Raw", "IK"],
label="Post-processing",
value="IK",
info="Use basic inverse kinematic (IK) for foot contact locking",
)
gen_btn = gr.Button("Generate", variant="primary")
clear = gr.Button("Clear", variant="secondary")
gr.Markdown(
f"""
"""
)
with gr.Column(scale=2):
def generate_example(text):
return generate_and_show(text)
examples = gr.Examples(
examples=[[x, None, None] for x in EXAMPLES],
inputs=[text],
examples_per_page=10,
run_on_click=False,
cache_examples=False,
fn=generate_example,
outputs=[],
)
i = -1
# should indent
for _ in range(1):
with gr.Row():
for _ in range(1):
i += 1
video = gr.HTML()
videos.append(video)
gr.Markdown(WEBSITE_bottom)
# connect the examples to the output
# a bit hacky
examples.outputs = videos
def load_example(example_id):
processed_example = examples.non_none_processed_examples[example_id]
return gr.utils.resolve_singleton(processed_example)
examples.dataset.click(
load_example,
inputs=[examples.dataset],
outputs=examples.inputs_with_examples, # type: ignore
show_progress=False,
postprocess=False,
queue=False,
).then(fn=generate_example, inputs=examples.inputs, outputs=videos)
gen_btn.click(
fn=generate_and_show,
inputs=[text, motion_len, use_ik],
outputs=videos,
)
text.submit(
fn=generate_and_show,
inputs=[text, motion_len, use_ik],
outputs=videos,
)
def clear_videos():
return [None for x in range(1)] + [DEFAULT_TEXT]
clear.click(fn=clear_videos, outputs=videos + [text])
demo.launch(share=True)
|