--- license: apache-2.0 base_model: facebook/convnext-tiny-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: convnext-tiny-224-convnext results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9950980392156863 --- # convnext-tiny-224-convnext This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co./facebook/convnext-tiny-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0225 - Accuracy: 0.9951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2175 | 1.0 | 327 | 0.1708 | 0.9436 | | 0.1476 | 2.0 | 654 | 0.0908 | 0.9672 | | 0.0961 | 3.0 | 981 | 0.0428 | 0.9862 | | 0.0677 | 4.0 | 1309 | 0.0654 | 0.9777 | | 0.049 | 5.0 | 1636 | 0.0498 | 0.9857 | | 0.0347 | 6.0 | 1963 | 0.0352 | 0.9886 | | 0.0282 | 7.0 | 2290 | 0.0278 | 0.9913 | | 0.0694 | 8.0 | 2618 | 0.0299 | 0.9918 | | 0.0733 | 9.0 | 2945 | 0.0246 | 0.9938 | | 0.0399 | 10.0 | 3272 | 0.0285 | 0.9918 | | 0.0276 | 11.0 | 3599 | 0.0249 | 0.9933 | | 0.0259 | 12.0 | 3927 | 0.0241 | 0.9942 | | 0.0551 | 13.0 | 4254 | 0.0298 | 0.9920 | | 0.0658 | 14.0 | 4581 | 0.0288 | 0.9924 | | 0.0208 | 14.99 | 4905 | 0.0225 | 0.9951 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0