--- language: - en tags: - biomedical - bionlp - entity linking - embedding - bert --- The GEBERT model pre-trained with GAT graph encoder. The model was published at [CLEF 2023 conference](https://clef2023.clef-initiative.eu/). The source code is available at [github](https://github.com/Andoree/GEBERT). Pretraining data: biomedical concept graph and concept names from the UMLS (2020AB release). Base model: [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co./microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext). ```bibtex @inproceedings{sakhovskiy2023gebert, author="Sakhovskiy, Andrey and Semenova, Natalia and Kadurin, Artur and Tutubalina, Elena", title="Graph-Enriched Biomedical Entity Representation Transformer", booktitle="Experimental IR Meets Multilinguality, Multimodality, and Interaction", year="2023", publisher="Springer Nature Switzerland", address="Cham", pages="109--120", isbn="978-3-031-42448-9" } ```