--- license: gemma library_name: peft tags: - generated_from_trainer base_model: google/gemma-2b metrics: - accuracy - f1 - precision - recall model-index: - name: gemma-finetuned-spam results: [] --- # gemma-finetuned-spam This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co./google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0545 - Accuracy: 0.994 - F1: 0.994 - Precision: 0.994 - Recall: 0.994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.589634237431302e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0491 | 1.0 | 1125 | 0.0730 | 0.989 | 0.9890 | 0.9861 | 0.992 | | 0.0253 | 2.0 | 2250 | 0.0516 | 0.99 | 0.9900 | 0.9920 | 0.988 | | 0.006 | 3.0 | 3375 | 0.0546 | 0.993 | 0.9930 | 0.9920 | 0.994 | | 0.0 | 4.0 | 4500 | 0.0545 | 0.994 | 0.994 | 0.994 | 0.994 | | 0.0001 | 5.0 | 5625 | 0.0554 | 0.994 | 0.994 | 0.994 | 0.994 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1