|
{ |
|
"best_metric": 0.6369731800766284, |
|
"best_model_checkpoint": "bert-finetuned-spam/run-4/checkpoint-26", |
|
"epoch": 1.9622641509433962, |
|
"eval_steps": 500, |
|
"global_step": 26, |
|
"is_hyper_param_search": true, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 0.9811320754716981, |
|
"eval_accuracy": 0.6360153256704981, |
|
"eval_loss": 0.6667433977127075, |
|
"eval_runtime": 11.9551, |
|
"eval_samples_per_second": 87.327, |
|
"eval_steps_per_second": 5.521, |
|
"step": 13 |
|
}, |
|
{ |
|
"epoch": 1.9622641509433962, |
|
"eval_accuracy": 0.6369731800766284, |
|
"eval_loss": 0.6545999646186829, |
|
"eval_runtime": 11.9785, |
|
"eval_samples_per_second": 87.156, |
|
"eval_steps_per_second": 5.51, |
|
"step": 26 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 39, |
|
"num_input_tokens_seen": 0, |
|
"num_train_epochs": 3, |
|
"save_steps": 500, |
|
"total_flos": 0, |
|
"train_batch_size": 64, |
|
"trial_name": null, |
|
"trial_params": { |
|
"learning_rate": 6.10788229546224e-05, |
|
"num_train_epochs": 3, |
|
"per_device_train_batch_size": 64, |
|
"seed": 16 |
|
} |
|
} |
|
|