--- library_name: transformers license: apache-2.0 base_model: timm/resnet18.a1_in1k tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-beans results: [] --- # vit-base-beans This model is a fine-tuned version of [timm/resnet18.a1_in1k](https://huggingface.co./timm/resnet18.a1_in1k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 1.0324 - Accuracy: 0.6917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0884 | 1.0 | 130 | 1.0903 | 0.4060 | | 1.0721 | 2.0 | 260 | 1.0681 | 0.5188 | | 1.0623 | 3.0 | 390 | 1.0460 | 0.6391 | | 1.052 | 4.0 | 520 | 1.0410 | 0.6165 | | 1.0519 | 5.0 | 650 | 1.0324 | 0.6917 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.0 - Datasets 2.15.1.dev0 - Tokenizers 0.20.0