--- license: apache-2.0 --- Same as https://huggingface.co./HuggingFaceM4/siglip-so400m-14-384-flash-attn2 with two changes: - increase max resolution to 980 x 980 (instead of 384 x 384) by interpolating the position embeddings - implement the strategy in [NaViT](https://arxiv.org/abs/2307.06304) to allow a/ variable resoltion images, b/ aspect ratio preserved images These changes only apply to the vision tower. No changes to the text tower. Implementation is fully backward compatible to `https://huggingface.co./HuggingFaceM4/siglip-so400m-14-384-flash-attn2` -> just don't specify the `patch_attention_mask` Usage: ```python import torch from modeling_siglip import SiglipVisionModel DEVICE = torch.device("cuda:0") PATCH_SIZE = 14 pixel_values = torch.randn(2, 3, 28, 42, dtype=torch.bfloat16, device=DEVICE) pixel_attention_mask = [ [ [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [1] * 14 + [1] * 14 + [1] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, [0] * 14 + [0] * 14 + [0] * 14, ], [ [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, [1] * 14 + [1] * 14 + [0] * 14, ], ] pixel_attention_mask = torch.tensor(pixel_attention_mask, dtype=torch.bool, device=DEVICE) patches_subgrid = pixel_attention_mask.unfold( dimension=1, size=PATCH_SIZE, step=PATCH_SIZE ).unfold(dimension=2, size=PATCH_SIZE, step=PATCH_SIZE) patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool() model = SiglipVisionModel.from_pretrained("HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit", _flash_attn_2_enabled=True) model.train() model.vision_model.to(DEVICE, dtype=torch.bfloat16) output = model.vision_model(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask) ```