---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-3B-Instruct
tags:
- generated_from_trainer
datasets:
- train.jsonl
model-index:
- name: outputs/out
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.6.0`
```yaml
base_model: Qwen/Qwen2.5-3B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: false
load_in_8bit: false
load_in_4bit: false
strict: false
output_dir: ./outputs/out
chat_template: qwen_25
datasets:
- path: train.jsonl
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
roles:
system:
- system
user:
- user
assistant:
- assistant
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./outputs/out
eval_sample_packing: False
sequence_len: 8192
sample_packing: False
pad_to_sequence_len: False
wandb_project: mergedbench
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
# hub_model_id: amphora/merged-bench-qwen-full
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 4
micro_batch_size: 8
eval_batch_size: 4
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 30
evals_per_epoch: 3
eval_max_new_tokens: 128
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero1.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
```
# outputs/out
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co./Qwen/Qwen2.5-3B-Instruct) on the train.jsonl dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2783
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3989 | 0.0041 | 1 | 1.7111 |
| 0.2969 | 0.3350 | 82 | 0.3192 |
| 0.3027 | 0.6701 | 164 | 0.2914 |
| 0.177 | 1.0082 | 246 | 0.2854 |
| 0.1735 | 1.3432 | 328 | 0.2857 |
| 0.1684 | 1.6782 | 410 | 0.2805 |
| 0.1109 | 2.0163 | 492 | 0.2741 |
| 0.0946 | 2.3514 | 574 | 0.2828 |
| 0.0968 | 2.6864 | 656 | 0.2783 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0