--- library_name: transformers license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - generated_from_trainer datasets: - train.jsonl model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.7.0` ```yaml base_model: Qwen/Qwen2.5-3B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: false load_in_8bit: false load_in_4bit: false strict: false output_dir: ./outputs/out chat_template: qwen_25 datasets: - path: train.jsonl type: chat_template field_messages: messages message_field_role: role message_field_content: content roles: system: - system user: - user assistant: - assistant dataset_prepared_path: last_run_prepared val_set_size: 0.005 output_dir: ./outputs/out eval_sample_packing: False sequence_len: 8192 sample_packing: False pad_to_sequence_len: False wandb_project: mergedbench wandb_entity: wandb_watch: wandb_name: wandb_log_model: plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true gradient_accumulation_steps: 4 micro_batch_size: 8 eval_batch_size: 4 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 30 evals_per_epoch: 3 eval_max_new_tokens: 128 eval_table_size: saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero1.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: ```

# outputs/out This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co./Qwen/Qwen2.5-3B-Instruct) on the train.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.2847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4163 | 0.0040 | 1 | 1.4218 | | 0.3799 | 0.3323 | 83 | 0.3376 | | 0.3263 | 0.6647 | 166 | 0.3207 | | 0.3213 | 0.9970 | 249 | 0.3041 | | 0.2369 | 1.3283 | 332 | 0.3128 | | 0.2436 | 1.6607 | 415 | 0.3041 | | 0.2159 | 1.9930 | 498 | 0.2962 | | 0.1832 | 2.3243 | 581 | 0.2914 | | 0.1941 | 2.6567 | 664 | 0.2865 | | 0.185 | 2.9890 | 747 | 0.2847 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0