--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - generated_from_trainer datasets: - train.jsonl model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-1.5B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: false load_in_8bit: false load_in_4bit: false strict: false output_dir: ./outputs/out remove_unused_columns: false chat_template: qwen_25 # chat_template: qwen_25 datasets: - path: train.jsonl type: chat_template field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant dataset_prepared_path: mr1-sft-1 # dataset_prepared_path: ko_r1 val_set_size: 0.005 eval_sample_packing: False sequence_len: 512 sample_packing: False pad_to_sequence_len: False wandb_project: mergedbench wandb_entity: wandb_watch: wandb_name: wandb_log_model: plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true gradient_accumulation_steps: 1 micro_batch_size: 128 eval_batch_size: 4 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 3 eval_max_new_tokens: 128 eval_table_size: saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero1.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: eos_token: ```

# outputs/out This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co./Qwen/Qwen2.5-1.5B-Instruct) on the train.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.3103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 256 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.6099 | 0.0079 | 1 | 3.1001 | | 0.0071 | 0.3386 | 43 | 0.3896 | | 0.0098 | 0.6772 | 86 | 0.3527 | | 0.0026 | 1.0157 | 129 | 0.3306 | | 0.0128 | 1.3543 | 172 | 0.3166 | | 0.0042 | 1.6929 | 215 | 0.3484 | | 0.0019 | 2.0315 | 258 | 0.2931 | | 0.0039 | 2.3701 | 301 | 0.3032 | | 0.0 | 2.7087 | 344 | 0.3103 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0