--- library_name: transformers license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - generated_from_trainer datasets: - mb_base.jsonl model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-3B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: false load_in_8bit: false load_in_4bit: false strict: false output_dir: ./outputs/out chat_template: qwen_25 datasets: - path: mb_base.jsonl type: chat_template field_messages: messages message_field_role: role message_field_content: content roles: system: - system user: - user assistant: - assistant dataset_prepared_path: last_run_prepared val_set_size: 0.005 output_dir: ./outputs/out eval_sample_packing: False sequence_len: 8192 sample_packing: False pad_to_sequence_len: False wandb_project: mergedbench wandb_entity: wandb_watch: wandb_name: wandb_log_model: plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true gradient_accumulation_steps: 4 micro_batch_size: 8 eval_batch_size: 4 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 30 evals_per_epoch: 3 eval_max_new_tokens: 128 eval_table_size: saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero1.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: ```

# outputs/out This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co./Qwen/Qwen2.5-3B-Instruct) on the mb_base.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.3531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.062 | 0.0059 | 1 | 1.0835 | | 0.3584 | 0.3368 | 57 | 0.3954 | | 0.3372 | 0.6736 | 114 | 0.3638 | | 0.2579 | 1.0059 | 171 | 0.3497 | | 0.2359 | 1.3427 | 228 | 0.3520 | | 0.2258 | 1.6795 | 285 | 0.3461 | | 0.1673 | 2.0118 | 342 | 0.3411 | | 0.1567 | 2.3486 | 399 | 0.3547 | | 0.1571 | 2.6854 | 456 | 0.3531 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0