amphora commited on
Commit
bb88965
·
verified ·
1 Parent(s): dcad34d

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 3b-w-cot+/README.md +163 -0
  2. 3b-w-cot+/added_tokens.json +24 -0
  3. 3b-w-cot+/checkpoint-244/added_tokens.json +24 -0
  4. 3b-w-cot+/checkpoint-244/config.json +28 -0
  5. 3b-w-cot+/checkpoint-244/generation_config.json +14 -0
  6. 3b-w-cot+/checkpoint-244/global_step244/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  7. 3b-w-cot+/checkpoint-244/global_step244/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  8. 3b-w-cot+/checkpoint-244/global_step244/mp_rank_00_model_states.pt +3 -0
  9. 3b-w-cot+/checkpoint-244/latest +1 -0
  10. 3b-w-cot+/checkpoint-244/merges.txt +0 -0
  11. 3b-w-cot+/checkpoint-244/model-00001-of-00002.safetensors +3 -0
  12. 3b-w-cot+/checkpoint-244/model-00002-of-00002.safetensors +3 -0
  13. 3b-w-cot+/checkpoint-244/model.safetensors.index.json +442 -0
  14. 3b-w-cot+/checkpoint-244/rng_state_0.pth +3 -0
  15. 3b-w-cot+/checkpoint-244/rng_state_1.pth +3 -0
  16. 3b-w-cot+/checkpoint-244/scheduler.pt +3 -0
  17. 3b-w-cot+/checkpoint-244/special_tokens_map.json +31 -0
  18. 3b-w-cot+/checkpoint-244/tokenizer.json +3 -0
  19. 3b-w-cot+/checkpoint-244/tokenizer_config.json +208 -0
  20. 3b-w-cot+/checkpoint-244/trainer_state.json +1765 -0
  21. 3b-w-cot+/checkpoint-244/training_args.bin +3 -0
  22. 3b-w-cot+/checkpoint-244/vocab.json +0 -0
  23. 3b-w-cot+/checkpoint-244/zero_to_fp32.py +760 -0
  24. 3b-w-cot+/checkpoint-488/added_tokens.json +24 -0
  25. 3b-w-cot+/checkpoint-488/config.json +28 -0
  26. 3b-w-cot+/checkpoint-488/generation_config.json +14 -0
  27. 3b-w-cot+/checkpoint-488/global_step487/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  28. 3b-w-cot+/checkpoint-488/global_step487/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  29. 3b-w-cot+/checkpoint-488/global_step487/mp_rank_00_model_states.pt +3 -0
  30. 3b-w-cot+/checkpoint-488/latest +1 -0
  31. 3b-w-cot+/checkpoint-488/merges.txt +0 -0
  32. 3b-w-cot+/checkpoint-488/model-00001-of-00002.safetensors +3 -0
  33. 3b-w-cot+/checkpoint-488/model-00002-of-00002.safetensors +3 -0
  34. 3b-w-cot+/checkpoint-488/model.safetensors.index.json +442 -0
  35. 3b-w-cot+/checkpoint-488/rng_state_0.pth +3 -0
  36. 3b-w-cot+/checkpoint-488/rng_state_1.pth +3 -0
  37. 3b-w-cot+/checkpoint-488/scheduler.pt +3 -0
  38. 3b-w-cot+/checkpoint-488/special_tokens_map.json +31 -0
  39. 3b-w-cot+/checkpoint-488/tokenizer.json +3 -0
  40. 3b-w-cot+/checkpoint-488/tokenizer_config.json +208 -0
  41. 3b-w-cot+/checkpoint-488/trainer_state.json +3497 -0
  42. 3b-w-cot+/checkpoint-488/training_args.bin +3 -0
  43. 3b-w-cot+/checkpoint-488/vocab.json +0 -0
  44. 3b-w-cot+/checkpoint-488/zero_to_fp32.py +760 -0
  45. 3b-w-cot+/checkpoint-732/added_tokens.json +24 -0
  46. 3b-w-cot+/checkpoint-732/config.json +28 -0
  47. 3b-w-cot+/checkpoint-732/generation_config.json +14 -0
  48. 3b-w-cot+/checkpoint-732/global_step730/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  49. 3b-w-cot+/checkpoint-732/global_step730/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  50. 3b-w-cot+/checkpoint-732/global_step730/mp_rank_00_model_states.pt +3 -0
3b-w-cot+/README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - train-mb.jsonl
7
+ model-index:
8
+ - name: outputs/out
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.8.0.dev0`
19
+ ```yaml
20
+ base_model: ckpt/3b-w-cot/checkpoint-747
21
+ model_type: AutoModelForCausalLM
22
+ tokenizer_type: AutoTokenizer
23
+ trust_remote_code: false
24
+
25
+ load_in_8bit: false
26
+ load_in_4bit: false
27
+ strict: false
28
+
29
+ output_dir: ./outputs/out
30
+ chat_template: qwen_25
31
+ datasets:
32
+ - path: train-mb.jsonl
33
+ type: chat_template
34
+ field_messages: messages
35
+ message_field_role: role
36
+ message_field_content: content
37
+ roles:
38
+ system:
39
+ - system
40
+ user:
41
+ - user
42
+ assistant:
43
+ - assistant
44
+
45
+ dataset_prepared_path: last_run_prepared
46
+ val_set_size: 0.005
47
+ output_dir: ./outputs/out
48
+ eval_sample_packing: False
49
+
50
+ sequence_len: 8192
51
+ sample_packing: False
52
+ pad_to_sequence_len: False
53
+
54
+ wandb_project: mergedbench
55
+ wandb_entity:
56
+ wandb_watch:
57
+ wandb_name:
58
+ wandb_log_model:
59
+ # hub_model_id: amphora/merged-bench-qwen-full
60
+
61
+ plugins:
62
+ - axolotl.integrations.liger.LigerPlugin
63
+ liger_rope: true
64
+ liger_rms_norm: true
65
+ liger_swiglu: true
66
+ liger_fused_linear_cross_entropy: true
67
+
68
+ gradient_accumulation_steps: 4
69
+ micro_batch_size: 8
70
+ eval_batch_size: 4
71
+ num_epochs: 3
72
+ optimizer: paged_adamw_8bit
73
+ lr_scheduler: cosine
74
+ learning_rate: 2e-5
75
+
76
+ train_on_inputs: false
77
+ group_by_length: false
78
+ bf16: auto
79
+ fp16:
80
+ tf32: false
81
+
82
+ gradient_checkpointing: true
83
+ gradient_checkpointing_kwargs:
84
+ use_reentrant: false
85
+ early_stopping_patience:
86
+ resume_from_checkpoint:
87
+ logging_steps: 1
88
+ xformers_attention:
89
+ flash_attention: true
90
+
91
+ warmup_steps: 30
92
+ evals_per_epoch: 3
93
+ eval_max_new_tokens: 128
94
+ eval_table_size:
95
+ saves_per_epoch: 1
96
+ debug:
97
+ deepspeed: deepspeed_configs/zero1.json
98
+ weight_decay: 0.01
99
+ fsdp:
100
+ fsdp_config:
101
+ special_tokens:
102
+ ```
103
+
104
+ </details><br>
105
+
106
+ # outputs/out
107
+
108
+ This model was trained from scratch on the train-mb.jsonl dataset.
109
+ It achieves the following results on the evaluation set:
110
+ - Loss: 0.2554
111
+
112
+ ## Model description
113
+
114
+ More information needed
115
+
116
+ ## Intended uses & limitations
117
+
118
+ More information needed
119
+
120
+ ## Training and evaluation data
121
+
122
+ More information needed
123
+
124
+ ## Training procedure
125
+
126
+ ### Training hyperparameters
127
+
128
+ The following hyperparameters were used during training:
129
+ - learning_rate: 2e-05
130
+ - train_batch_size: 8
131
+ - eval_batch_size: 4
132
+ - seed: 42
133
+ - distributed_type: multi-GPU
134
+ - num_devices: 2
135
+ - gradient_accumulation_steps: 4
136
+ - total_train_batch_size: 64
137
+ - total_eval_batch_size: 8
138
+ - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
139
+ - lr_scheduler_type: cosine
140
+ - lr_scheduler_warmup_steps: 30
141
+ - num_epochs: 3.0
142
+
143
+ ### Training results
144
+
145
+ | Training Loss | Epoch | Step | Validation Loss |
146
+ |:-------------:|:------:|:----:|:---------------:|
147
+ | 0.477 | 0.0041 | 1 | 0.8367 |
148
+ | 0.2339 | 0.3357 | 82 | 0.2754 |
149
+ | 0.2318 | 0.6714 | 164 | 0.2667 |
150
+ | 0.1688 | 1.0041 | 246 | 0.2618 |
151
+ | 0.1467 | 1.3398 | 328 | 0.2673 |
152
+ | 0.1605 | 1.6755 | 410 | 0.2577 |
153
+ | 0.1206 | 2.0082 | 492 | 0.2539 |
154
+ | 0.1022 | 2.3439 | 574 | 0.2587 |
155
+ | 0.0881 | 2.6796 | 656 | 0.2554 |
156
+
157
+
158
+ ### Framework versions
159
+
160
+ - Transformers 4.49.0
161
+ - Pytorch 2.5.1+cu121
162
+ - Datasets 3.2.0
163
+ - Tokenizers 0.21.0
3b-w-cot+/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-w-cot+/checkpoint-244/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-w-cot+/checkpoint-244/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ckpt/3b-w-cot/checkpoint-747",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.49.0",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
3b-w-cot+/checkpoint-244/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
3b-w-cot+/checkpoint-244/global_step244/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea41c8f2726b36ff0db03ba02c1c7f67d206be3993e17812e702273aae19dd02
3
+ size 9306058322
3b-w-cot+/checkpoint-244/global_step244/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbec0a25e4ee80ff214f60de99f85cd1b59bd87a46e5d9dd13be56139577b3e3
3
+ size 9306060690
3b-w-cot+/checkpoint-244/global_step244/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee7c23d50026e8003e0359f5a0ed45475e0bafa887d37eeb0dbb473a365e6c24
3
+ size 6171993592
3b-w-cot+/checkpoint-244/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step244
3b-w-cot+/checkpoint-244/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-w-cot+/checkpoint-244/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:902bf38b67efd1e0f84e8b3cd2e6f0ce844ae92f29b646a5cf9bb1560fde4d55
3
+ size 4957560304
3b-w-cot+/checkpoint-244/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04e7e4bcb562e8498e019b7d3ed72400d6a30fd934801232970e3bed8f77a698
3
+ size 1836696752
3b-w-cot+/checkpoint-244/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6794207232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-w-cot+/checkpoint-244/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9affc1541e7e94c18354d5173bc55400c5f07faf3d080c6d453d48e7a8d6ac3
3
+ size 14512
3b-w-cot+/checkpoint-244/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4748c3ebf0e4c051c58b92e4a8c5b87cdb39d55cfdc2aec81a1baef0f02fc113
3
+ size 14512
3b-w-cot+/checkpoint-244/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cb186d02e42c19d881269361281b0d1dc724284e39baf6809ced6fd93070319
3
+ size 1064
3b-w-cot+/checkpoint-244/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
3b-w-cot+/checkpoint-244/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
3b-w-cot+/checkpoint-244/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
3b-w-cot+/checkpoint-244/trainer_state.json ADDED
@@ -0,0 +1,1765 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9989764585465711,
5
+ "eval_steps": 82,
6
+ "global_step": 244,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0040941658137154556,
13
+ "grad_norm": 8.007163047790527,
14
+ "learning_rate": 6.666666666666667e-07,
15
+ "loss": 0.477,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0040941658137154556,
20
+ "eval_loss": 0.8367487192153931,
21
+ "eval_runtime": 4.4844,
22
+ "eval_samples_per_second": 17.617,
23
+ "eval_steps_per_second": 2.23,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.008188331627430911,
28
+ "grad_norm": 8.800883293151855,
29
+ "learning_rate": 1.3333333333333334e-06,
30
+ "loss": 0.6282,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.012282497441146366,
35
+ "grad_norm": 9.306445121765137,
36
+ "learning_rate": 2.0000000000000003e-06,
37
+ "loss": 0.6202,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.016376663254861822,
42
+ "grad_norm": 10.017245292663574,
43
+ "learning_rate": 2.666666666666667e-06,
44
+ "loss": 0.6161,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.02047082906857728,
49
+ "grad_norm": 9.14148235321045,
50
+ "learning_rate": 3.3333333333333333e-06,
51
+ "loss": 0.6081,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.02456499488229273,
56
+ "grad_norm": 8.813340187072754,
57
+ "learning_rate": 4.000000000000001e-06,
58
+ "loss": 0.5697,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.028659160696008188,
63
+ "grad_norm": 6.7533745765686035,
64
+ "learning_rate": 4.666666666666667e-06,
65
+ "loss": 0.4834,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.032753326509723645,
70
+ "grad_norm": 6.1987481117248535,
71
+ "learning_rate": 5.333333333333334e-06,
72
+ "loss": 0.4857,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.0368474923234391,
77
+ "grad_norm": 2.4827005863189697,
78
+ "learning_rate": 6e-06,
79
+ "loss": 0.3713,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.04094165813715456,
84
+ "grad_norm": 2.163064956665039,
85
+ "learning_rate": 6.666666666666667e-06,
86
+ "loss": 0.3284,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.04503582395087001,
91
+ "grad_norm": 1.9997942447662354,
92
+ "learning_rate": 7.333333333333333e-06,
93
+ "loss": 0.3289,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.04912998976458546,
98
+ "grad_norm": 2.7956204414367676,
99
+ "learning_rate": 8.000000000000001e-06,
100
+ "loss": 0.3208,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.05322415557830092,
105
+ "grad_norm": 2.8886733055114746,
106
+ "learning_rate": 8.666666666666668e-06,
107
+ "loss": 0.3123,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.057318321392016376,
112
+ "grad_norm": 2.217071771621704,
113
+ "learning_rate": 9.333333333333334e-06,
114
+ "loss": 0.2881,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.06141248720573183,
119
+ "grad_norm": 1.9985229969024658,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.283,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.06550665301944729,
126
+ "grad_norm": 1.8881174325942993,
127
+ "learning_rate": 1.0666666666666667e-05,
128
+ "loss": 0.2616,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.06960081883316274,
133
+ "grad_norm": 1.9551236629486084,
134
+ "learning_rate": 1.1333333333333334e-05,
135
+ "loss": 0.2894,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.0736949846468782,
140
+ "grad_norm": 1.8677968978881836,
141
+ "learning_rate": 1.2e-05,
142
+ "loss": 0.2328,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.07778915046059365,
147
+ "grad_norm": 1.9170935153961182,
148
+ "learning_rate": 1.2666666666666667e-05,
149
+ "loss": 0.2577,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.08188331627430911,
154
+ "grad_norm": 2.189279794692993,
155
+ "learning_rate": 1.3333333333333333e-05,
156
+ "loss": 0.2555,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.08597748208802457,
161
+ "grad_norm": 3.202075242996216,
162
+ "learning_rate": 1.4e-05,
163
+ "loss": 0.2647,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.09007164790174002,
168
+ "grad_norm": 2.774186372756958,
169
+ "learning_rate": 1.4666666666666666e-05,
170
+ "loss": 0.2531,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.09416581371545547,
175
+ "grad_norm": 2.0601961612701416,
176
+ "learning_rate": 1.5333333333333334e-05,
177
+ "loss": 0.2654,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.09825997952917093,
182
+ "grad_norm": 1.781900405883789,
183
+ "learning_rate": 1.6000000000000003e-05,
184
+ "loss": 0.2358,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.1023541453428864,
189
+ "grad_norm": 1.8549216985702515,
190
+ "learning_rate": 1.6666666666666667e-05,
191
+ "loss": 0.2362,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.10644831115660185,
196
+ "grad_norm": 2.1376802921295166,
197
+ "learning_rate": 1.7333333333333336e-05,
198
+ "loss": 0.2334,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.1105424769703173,
203
+ "grad_norm": 2.134582281112671,
204
+ "learning_rate": 1.8e-05,
205
+ "loss": 0.267,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.11463664278403275,
210
+ "grad_norm": 1.6425909996032715,
211
+ "learning_rate": 1.866666666666667e-05,
212
+ "loss": 0.2184,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.1187308085977482,
217
+ "grad_norm": 1.601938009262085,
218
+ "learning_rate": 1.9333333333333333e-05,
219
+ "loss": 0.256,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.12282497441146366,
224
+ "grad_norm": 1.626160740852356,
225
+ "learning_rate": 2e-05,
226
+ "loss": 0.2548,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.1269191402251791,
231
+ "grad_norm": 1.6894042491912842,
232
+ "learning_rate": 1.999989986294826e-05,
233
+ "loss": 0.2438,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.13101330603889458,
238
+ "grad_norm": 1.6300302743911743,
239
+ "learning_rate": 1.9999599453798523e-05,
240
+ "loss": 0.2273,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.13510747185261002,
245
+ "grad_norm": 1.6301401853561401,
246
+ "learning_rate": 1.999909877856721e-05,
247
+ "loss": 0.2539,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.13920163766632548,
252
+ "grad_norm": 1.6974273920059204,
253
+ "learning_rate": 1.9998397847281548e-05,
254
+ "loss": 0.256,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.14329580348004095,
259
+ "grad_norm": 1.5356749296188354,
260
+ "learning_rate": 1.9997496673979375e-05,
261
+ "loss": 0.2278,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.1473899692937564,
266
+ "grad_norm": 1.6304699182510376,
267
+ "learning_rate": 1.9996395276708856e-05,
268
+ "loss": 0.2488,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.15148413510747186,
273
+ "grad_norm": 1.6241912841796875,
274
+ "learning_rate": 1.999509367752813e-05,
275
+ "loss": 0.2407,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.1555783009211873,
280
+ "grad_norm": 1.6954501867294312,
281
+ "learning_rate": 1.9993591902504854e-05,
282
+ "loss": 0.2279,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.15967246673490276,
287
+ "grad_norm": 1.5775200128555298,
288
+ "learning_rate": 1.9991889981715696e-05,
289
+ "loss": 0.2443,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.16376663254861823,
294
+ "grad_norm": 1.6417704820632935,
295
+ "learning_rate": 1.9989987949245725e-05,
296
+ "loss": 0.2498,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.16786079836233367,
301
+ "grad_norm": 1.6866360902786255,
302
+ "learning_rate": 1.9987885843187717e-05,
303
+ "loss": 0.2496,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.17195496417604914,
308
+ "grad_norm": 1.6979321241378784,
309
+ "learning_rate": 1.9985583705641418e-05,
310
+ "loss": 0.2721,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.17604912998976457,
315
+ "grad_norm": 1.676047682762146,
316
+ "learning_rate": 1.9983081582712684e-05,
317
+ "loss": 0.2506,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.18014329580348004,
322
+ "grad_norm": 1.7262601852416992,
323
+ "learning_rate": 1.998037952451255e-05,
324
+ "loss": 0.2371,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.1842374616171955,
329
+ "grad_norm": 1.4194152355194092,
330
+ "learning_rate": 1.9977477585156252e-05,
331
+ "loss": 0.2619,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.18833162743091095,
336
+ "grad_norm": 1.5654889345169067,
337
+ "learning_rate": 1.9974375822762117e-05,
338
+ "loss": 0.2299,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.19242579324462641,
343
+ "grad_norm": 1.844489336013794,
344
+ "learning_rate": 1.9971074299450414e-05,
345
+ "loss": 0.2692,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.19651995905834185,
350
+ "grad_norm": 1.5128370523452759,
351
+ "learning_rate": 1.9967573081342103e-05,
352
+ "loss": 0.2589,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.20061412487205732,
357
+ "grad_norm": 1.5005507469177246,
358
+ "learning_rate": 1.9963872238557516e-05,
359
+ "loss": 0.2578,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.2047082906857728,
364
+ "grad_norm": 1.5974067449569702,
365
+ "learning_rate": 1.9959971845214953e-05,
366
+ "loss": 0.2494,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.20880245649948823,
371
+ "grad_norm": 1.5728641748428345,
372
+ "learning_rate": 1.9955871979429188e-05,
373
+ "loss": 0.2496,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.2128966223132037,
378
+ "grad_norm": 1.5953929424285889,
379
+ "learning_rate": 1.9951572723309918e-05,
380
+ "loss": 0.2429,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.21699078812691913,
385
+ "grad_norm": 1.7769081592559814,
386
+ "learning_rate": 1.9947074162960113e-05,
387
+ "loss": 0.252,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.2210849539406346,
392
+ "grad_norm": 1.6964116096496582,
393
+ "learning_rate": 1.9942376388474282e-05,
394
+ "loss": 0.2651,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.22517911975435004,
399
+ "grad_norm": 1.5599926710128784,
400
+ "learning_rate": 1.993747949393668e-05,
401
+ "loss": 0.2193,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.2292732855680655,
406
+ "grad_norm": 1.524835467338562,
407
+ "learning_rate": 1.9932383577419432e-05,
408
+ "loss": 0.2361,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.23336745138178097,
413
+ "grad_norm": 1.6240477561950684,
414
+ "learning_rate": 1.992708874098054e-05,
415
+ "loss": 0.2563,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.2374616171954964,
420
+ "grad_norm": 1.6357301473617554,
421
+ "learning_rate": 1.9921595090661872e-05,
422
+ "loss": 0.2456,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.24155578300921188,
427
+ "grad_norm": 1.5650979280471802,
428
+ "learning_rate": 1.991590273648702e-05,
429
+ "loss": 0.2512,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.24564994882292732,
434
+ "grad_norm": 1.4107614755630493,
435
+ "learning_rate": 1.9910011792459086e-05,
436
+ "loss": 0.2539,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.24974411463664278,
441
+ "grad_norm": 1.3979556560516357,
442
+ "learning_rate": 1.9903922376558432e-05,
443
+ "loss": 0.2348,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.2538382804503582,
448
+ "grad_norm": 1.4066411256790161,
449
+ "learning_rate": 1.989763461074029e-05,
450
+ "loss": 0.2419,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.2579324462640737,
455
+ "grad_norm": 1.533858060836792,
456
+ "learning_rate": 1.989114862093232e-05,
457
+ "loss": 0.252,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.26202661207778916,
462
+ "grad_norm": 1.4007140398025513,
463
+ "learning_rate": 1.9884464537032103e-05,
464
+ "loss": 0.2379,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.2661207778915046,
469
+ "grad_norm": 1.3841203451156616,
470
+ "learning_rate": 1.9877582492904533e-05,
471
+ "loss": 0.2377,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.27021494370522003,
476
+ "grad_norm": 1.274598479270935,
477
+ "learning_rate": 1.9870502626379127e-05,
478
+ "loss": 0.2364,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.2743091095189355,
483
+ "grad_norm": 1.59529447555542,
484
+ "learning_rate": 1.9863225079247286e-05,
485
+ "loss": 0.2647,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.27840327533265097,
490
+ "grad_norm": 1.4986138343811035,
491
+ "learning_rate": 1.985574999725943e-05,
492
+ "loss": 0.264,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.28249744114636643,
497
+ "grad_norm": 1.4692142009735107,
498
+ "learning_rate": 1.9848077530122083e-05,
499
+ "loss": 0.2475,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.2865916069600819,
504
+ "grad_norm": 1.5602682828903198,
505
+ "learning_rate": 1.9840207831494903e-05,
506
+ "loss": 0.244,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.2906857727737973,
511
+ "grad_norm": 1.5084633827209473,
512
+ "learning_rate": 1.983214105898757e-05,
513
+ "loss": 0.2442,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.2947799385875128,
518
+ "grad_norm": 1.451074242591858,
519
+ "learning_rate": 1.9823877374156647e-05,
520
+ "loss": 0.2673,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.29887410440122825,
525
+ "grad_norm": 1.4784746170043945,
526
+ "learning_rate": 1.9815416942502346e-05,
527
+ "loss": 0.2441,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.3029682702149437,
532
+ "grad_norm": 1.368421196937561,
533
+ "learning_rate": 1.98067599334652e-05,
534
+ "loss": 0.2439,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.3070624360286592,
539
+ "grad_norm": 1.4379913806915283,
540
+ "learning_rate": 1.979790652042268e-05,
541
+ "loss": 0.2238,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.3111566018423746,
546
+ "grad_norm": 1.5823594331741333,
547
+ "learning_rate": 1.978885688068572e-05,
548
+ "loss": 0.2725,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.31525076765609006,
553
+ "grad_norm": 1.5007753372192383,
554
+ "learning_rate": 1.9779611195495177e-05,
555
+ "loss": 0.2375,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.3193449334698055,
560
+ "grad_norm": 1.473763346672058,
561
+ "learning_rate": 1.977016965001817e-05,
562
+ "loss": 0.2611,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.323439099283521,
567
+ "grad_norm": 1.7358968257904053,
568
+ "learning_rate": 1.976053243334442e-05,
569
+ "loss": 0.2623,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.32753326509723646,
574
+ "grad_norm": 1.5595204830169678,
575
+ "learning_rate": 1.9750699738482403e-05,
576
+ "loss": 0.2676,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.33162743091095187,
581
+ "grad_norm": 1.685775637626648,
582
+ "learning_rate": 1.9740671762355548e-05,
583
+ "loss": 0.267,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.33572159672466734,
588
+ "grad_norm": 1.3360930681228638,
589
+ "learning_rate": 1.973044870579824e-05,
590
+ "loss": 0.2339,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.33572159672466734,
595
+ "eval_loss": 0.27538755536079407,
596
+ "eval_runtime": 5.5418,
597
+ "eval_samples_per_second": 14.255,
598
+ "eval_steps_per_second": 1.804,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.3398157625383828,
603
+ "grad_norm": 1.7223079204559326,
604
+ "learning_rate": 1.972003077355183e-05,
605
+ "loss": 0.2843,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.34390992835209827,
610
+ "grad_norm": 1.5389612913131714,
611
+ "learning_rate": 1.9709418174260523e-05,
612
+ "loss": 0.2604,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.34800409416581374,
617
+ "grad_norm": 1.3990126848220825,
618
+ "learning_rate": 1.9698611120467196e-05,
619
+ "loss": 0.2588,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.35209825997952915,
624
+ "grad_norm": 1.3090544939041138,
625
+ "learning_rate": 1.9687609828609156e-05,
626
+ "loss": 0.2264,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.3561924257932446,
631
+ "grad_norm": 1.3547587394714355,
632
+ "learning_rate": 1.9676414519013782e-05,
633
+ "loss": 0.2436,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.3602865916069601,
638
+ "grad_norm": 1.7848924398422241,
639
+ "learning_rate": 1.966502541589414e-05,
640
+ "loss": 0.2617,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.36438075742067555,
645
+ "grad_norm": 1.450150728225708,
646
+ "learning_rate": 1.965344274734447e-05,
647
+ "loss": 0.2456,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.368474923234391,
652
+ "grad_norm": 1.5955520868301392,
653
+ "learning_rate": 1.9641666745335626e-05,
654
+ "loss": 0.2571,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.3725690890481064,
659
+ "grad_norm": 1.4538159370422363,
660
+ "learning_rate": 1.9629697645710432e-05,
661
+ "loss": 0.2552,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.3766632548618219,
666
+ "grad_norm": 1.4258908033370972,
667
+ "learning_rate": 1.961753568817896e-05,
668
+ "loss": 0.2402,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.38075742067553736,
673
+ "grad_norm": 1.463593602180481,
674
+ "learning_rate": 1.9605181116313725e-05,
675
+ "loss": 0.2612,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.38485158648925283,
680
+ "grad_norm": 1.4867630004882812,
681
+ "learning_rate": 1.9592634177544803e-05,
682
+ "loss": 0.2272,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.3889457523029683,
687
+ "grad_norm": 1.4335721731185913,
688
+ "learning_rate": 1.957989512315489e-05,
689
+ "loss": 0.2562,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.3930399181166837,
694
+ "grad_norm": 1.3976503610610962,
695
+ "learning_rate": 1.9566964208274254e-05,
696
+ "loss": 0.2527,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.3971340839303992,
701
+ "grad_norm": 1.455560564994812,
702
+ "learning_rate": 1.9553841691875632e-05,
703
+ "loss": 0.2617,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.40122824974411464,
708
+ "grad_norm": 1.319207787513733,
709
+ "learning_rate": 1.9540527836769047e-05,
710
+ "loss": 0.251,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.4053224155578301,
715
+ "grad_norm": 1.3503410816192627,
716
+ "learning_rate": 1.9527022909596537e-05,
717
+ "loss": 0.253,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.4094165813715456,
722
+ "grad_norm": 1.472091555595398,
723
+ "learning_rate": 1.951332718082682e-05,
724
+ "loss": 0.2935,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.413510747185261,
729
+ "grad_norm": 1.4811311960220337,
730
+ "learning_rate": 1.9499440924749878e-05,
731
+ "loss": 0.261,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.41760491299897645,
736
+ "grad_norm": 1.595140814781189,
737
+ "learning_rate": 1.9485364419471454e-05,
738
+ "loss": 0.2703,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.4216990788126919,
743
+ "grad_norm": 1.3853557109832764,
744
+ "learning_rate": 1.9471097946907506e-05,
745
+ "loss": 0.2345,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.4257932446264074,
750
+ "grad_norm": 1.5886335372924805,
751
+ "learning_rate": 1.9456641792778527e-05,
752
+ "loss": 0.269,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.42988741044012285,
757
+ "grad_norm": 1.3403784036636353,
758
+ "learning_rate": 1.9441996246603848e-05,
759
+ "loss": 0.234,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.43398157625383826,
764
+ "grad_norm": 1.4540488719940186,
765
+ "learning_rate": 1.9427161601695833e-05,
766
+ "loss": 0.246,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.43807574206755373,
771
+ "grad_norm": 1.5493131875991821,
772
+ "learning_rate": 1.9412138155154e-05,
773
+ "loss": 0.2284,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.4421699078812692,
778
+ "grad_norm": 1.290971279144287,
779
+ "learning_rate": 1.9396926207859085e-05,
780
+ "loss": 0.2392,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.44626407369498466,
785
+ "grad_norm": 1.4140104055404663,
786
+ "learning_rate": 1.9381526064466995e-05,
787
+ "loss": 0.2554,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.4503582395087001,
792
+ "grad_norm": 1.7200373411178589,
793
+ "learning_rate": 1.9365938033402715e-05,
794
+ "loss": 0.2359,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.45445240532241554,
799
+ "grad_norm": 1.2797805070877075,
800
+ "learning_rate": 1.9350162426854152e-05,
801
+ "loss": 0.2321,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.458546571136131,
806
+ "grad_norm": 1.326955795288086,
807
+ "learning_rate": 1.933419956076584e-05,
808
+ "loss": 0.2516,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.4626407369498465,
813
+ "grad_norm": 1.510201334953308,
814
+ "learning_rate": 1.9318049754832656e-05,
815
+ "loss": 0.2467,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.46673490276356194,
820
+ "grad_norm": 2.9965062141418457,
821
+ "learning_rate": 1.9301713332493386e-05,
822
+ "loss": 0.2587,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.47082906857727735,
827
+ "grad_norm": 1.3663560152053833,
828
+ "learning_rate": 1.9285190620924267e-05,
829
+ "loss": 0.2535,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.4749232343909928,
834
+ "grad_norm": 1.1917448043823242,
835
+ "learning_rate": 1.926848195103242e-05,
836
+ "loss": 0.2292,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.4790174002047083,
841
+ "grad_norm": 1.3093336820602417,
842
+ "learning_rate": 1.925158765744924e-05,
843
+ "loss": 0.229,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.48311156601842375,
848
+ "grad_norm": 1.5121235847473145,
849
+ "learning_rate": 1.923450807852367e-05,
850
+ "loss": 0.2527,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.4872057318321392,
855
+ "grad_norm": 1.461378812789917,
856
+ "learning_rate": 1.9217243556315445e-05,
857
+ "loss": 0.2631,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.49129989764585463,
862
+ "grad_norm": 1.4177104234695435,
863
+ "learning_rate": 1.9199794436588244e-05,
864
+ "loss": 0.2378,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.4953940634595701,
869
+ "grad_norm": 1.5456838607788086,
870
+ "learning_rate": 1.9182161068802742e-05,
871
+ "loss": 0.2491,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.49948822927328557,
876
+ "grad_norm": 1.554958701133728,
877
+ "learning_rate": 1.916434380610963e-05,
878
+ "loss": 0.2461,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.503582395087001,
883
+ "grad_norm": 1.4894706010818481,
884
+ "learning_rate": 1.9146343005342546e-05,
885
+ "loss": 0.2823,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.5076765609007164,
890
+ "grad_norm": 1.359287142753601,
891
+ "learning_rate": 1.912815902701091e-05,
892
+ "loss": 0.2366,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.5117707267144319,
897
+ "grad_norm": 1.4244722127914429,
898
+ "learning_rate": 1.9109792235292715e-05,
899
+ "loss": 0.2398,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.5158648925281474,
904
+ "grad_norm": 1.4032812118530273,
905
+ "learning_rate": 1.909124299802724e-05,
906
+ "loss": 0.2601,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.5199590583418628,
911
+ "grad_norm": 1.5199010372161865,
912
+ "learning_rate": 1.9072511686707663e-05,
913
+ "loss": 0.2458,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.5240532241555783,
918
+ "grad_norm": 1.4342416524887085,
919
+ "learning_rate": 1.9053598676473656e-05,
920
+ "loss": 0.241,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.5281473899692938,
925
+ "grad_norm": 1.338181972503662,
926
+ "learning_rate": 1.9034504346103825e-05,
927
+ "loss": 0.2508,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.5322415557830092,
932
+ "grad_norm": 1.492775559425354,
933
+ "learning_rate": 1.9015229078008163e-05,
934
+ "loss": 0.2626,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.5363357215967247,
939
+ "grad_norm": 1.3123077154159546,
940
+ "learning_rate": 1.8995773258220374e-05,
941
+ "loss": 0.258,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.5404298874104401,
946
+ "grad_norm": 1.4001896381378174,
947
+ "learning_rate": 1.8976137276390145e-05,
948
+ "loss": 0.2425,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.5445240532241555,
953
+ "grad_norm": 1.3989671468734741,
954
+ "learning_rate": 1.8956321525775337e-05,
955
+ "loss": 0.2781,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.548618219037871,
960
+ "grad_norm": 1.260289192199707,
961
+ "learning_rate": 1.8936326403234125e-05,
962
+ "loss": 0.2432,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.5527123848515865,
967
+ "grad_norm": 1.308370590209961,
968
+ "learning_rate": 1.891615230921703e-05,
969
+ "loss": 0.2408,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.5568065506653019,
974
+ "grad_norm": 1.2668206691741943,
975
+ "learning_rate": 1.8895799647758912e-05,
976
+ "loss": 0.2408,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.5609007164790174,
981
+ "grad_norm": 1.4105634689331055,
982
+ "learning_rate": 1.8875268826470875e-05,
983
+ "loss": 0.2688,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.5649948822927329,
988
+ "grad_norm": 1.3877664804458618,
989
+ "learning_rate": 1.8854560256532098e-05,
990
+ "loss": 0.2379,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.5690890481064483,
995
+ "grad_norm": 1.2643476724624634,
996
+ "learning_rate": 1.8833674352681613e-05,
997
+ "loss": 0.2375,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.5731832139201638,
1002
+ "grad_norm": 1.6310402154922485,
1003
+ "learning_rate": 1.881261153320999e-05,
1004
+ "loss": 0.2435,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.5772773797338793,
1009
+ "grad_norm": 1.35072660446167,
1010
+ "learning_rate": 1.879137221995095e-05,
1011
+ "loss": 0.2293,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.5813715455475946,
1016
+ "grad_norm": 1.409683346748352,
1017
+ "learning_rate": 1.8769956838272937e-05,
1018
+ "loss": 0.2584,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.5854657113613101,
1023
+ "grad_norm": 1.4319274425506592,
1024
+ "learning_rate": 1.8748365817070586e-05,
1025
+ "loss": 0.2669,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.5895598771750256,
1030
+ "grad_norm": 1.4259189367294312,
1031
+ "learning_rate": 1.8726599588756144e-05,
1032
+ "loss": 0.2447,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.593654042988741,
1037
+ "grad_norm": 1.4267385005950928,
1038
+ "learning_rate": 1.8704658589250795e-05,
1039
+ "loss": 0.2567,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.5977482088024565,
1044
+ "grad_norm": 1.4896032810211182,
1045
+ "learning_rate": 1.868254325797594e-05,
1046
+ "loss": 0.2363,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.601842374616172,
1051
+ "grad_norm": 1.355659008026123,
1052
+ "learning_rate": 1.866025403784439e-05,
1053
+ "loss": 0.2481,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.6059365404298874,
1058
+ "grad_norm": 1.2849416732788086,
1059
+ "learning_rate": 1.8637791375251505e-05,
1060
+ "loss": 0.2631,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.6100307062436029,
1065
+ "grad_norm": 1.279733419418335,
1066
+ "learning_rate": 1.8615155720066247e-05,
1067
+ "loss": 0.2487,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.6141248720573184,
1072
+ "grad_norm": 1.370506763458252,
1073
+ "learning_rate": 1.859234752562217e-05,
1074
+ "loss": 0.245,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.6182190378710338,
1079
+ "grad_norm": 1.352271556854248,
1080
+ "learning_rate": 1.8569367248708343e-05,
1081
+ "loss": 0.227,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.6223132036847492,
1086
+ "grad_norm": 1.3176748752593994,
1087
+ "learning_rate": 1.8546215349560204e-05,
1088
+ "loss": 0.2484,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.6264073694984647,
1093
+ "grad_norm": 1.386770486831665,
1094
+ "learning_rate": 1.8522892291850335e-05,
1095
+ "loss": 0.257,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.6305015353121801,
1100
+ "grad_norm": 1.5251948833465576,
1101
+ "learning_rate": 1.849939854267919e-05,
1102
+ "loss": 0.2727,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.6345957011258956,
1107
+ "grad_norm": 1.378936767578125,
1108
+ "learning_rate": 1.847573457256571e-05,
1109
+ "loss": 0.2337,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.638689866939611,
1114
+ "grad_norm": 1.3500293493270874,
1115
+ "learning_rate": 1.845190085543795e-05,
1116
+ "loss": 0.2618,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.6427840327533265,
1121
+ "grad_norm": 1.4462950229644775,
1122
+ "learning_rate": 1.8427897868623535e-05,
1123
+ "loss": 0.2588,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.646878198567042,
1128
+ "grad_norm": 1.2208290100097656,
1129
+ "learning_rate": 1.840372609284013e-05,
1130
+ "loss": 0.2927,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.6509723643807575,
1135
+ "grad_norm": 1.3487396240234375,
1136
+ "learning_rate": 1.8379386012185813e-05,
1137
+ "loss": 0.2417,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.6550665301944729,
1142
+ "grad_norm": 1.2655378580093384,
1143
+ "learning_rate": 1.8354878114129368e-05,
1144
+ "loss": 0.2428,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.6591606960081884,
1149
+ "grad_norm": 1.181028962135315,
1150
+ "learning_rate": 1.8330202889500518e-05,
1151
+ "loss": 0.2397,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.6632548618219037,
1156
+ "grad_norm": 1.3897309303283691,
1157
+ "learning_rate": 1.8305360832480118e-05,
1158
+ "loss": 0.2276,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.6673490276356192,
1163
+ "grad_norm": 1.340640902519226,
1164
+ "learning_rate": 1.8280352440590236e-05,
1165
+ "loss": 0.2375,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.6714431934493347,
1170
+ "grad_norm": 1.5388420820236206,
1171
+ "learning_rate": 1.82551782146842e-05,
1172
+ "loss": 0.2318,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.6714431934493347,
1177
+ "eval_loss": 0.2667195796966553,
1178
+ "eval_runtime": 6.096,
1179
+ "eval_samples_per_second": 12.959,
1180
+ "eval_steps_per_second": 1.64,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.6755373592630501,
1185
+ "grad_norm": 1.4711631536483765,
1186
+ "learning_rate": 1.8229838658936566e-05,
1187
+ "loss": 0.2367,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.6796315250767656,
1192
+ "grad_norm": 1.3367588520050049,
1193
+ "learning_rate": 1.8204334280833005e-05,
1194
+ "loss": 0.2652,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.6837256908904811,
1199
+ "grad_norm": 1.5473802089691162,
1200
+ "learning_rate": 1.817866559116017e-05,
1201
+ "loss": 0.2693,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.6878198567041965,
1206
+ "grad_norm": 1.3539572954177856,
1207
+ "learning_rate": 1.8152833103995443e-05,
1208
+ "loss": 0.2431,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.691914022517912,
1213
+ "grad_norm": 1.3012574911117554,
1214
+ "learning_rate": 1.8126837336696645e-05,
1215
+ "loss": 0.2602,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.6960081883316275,
1220
+ "grad_norm": 1.3125128746032715,
1221
+ "learning_rate": 1.8100678809891668e-05,
1222
+ "loss": 0.2426,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.7001023541453428,
1227
+ "grad_norm": 1.2353239059448242,
1228
+ "learning_rate": 1.807435804746807e-05,
1229
+ "loss": 0.2176,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.7041965199590583,
1234
+ "grad_norm": 1.268622636795044,
1235
+ "learning_rate": 1.8047875576562556e-05,
1236
+ "loss": 0.2495,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.7082906857727738,
1241
+ "grad_norm": 1.3845950365066528,
1242
+ "learning_rate": 1.802123192755044e-05,
1243
+ "loss": 0.2643,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.7123848515864892,
1248
+ "grad_norm": 1.2450510263442993,
1249
+ "learning_rate": 1.7994427634035016e-05,
1250
+ "loss": 0.2445,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.7164790174002047,
1255
+ "grad_norm": 1.545483946800232,
1256
+ "learning_rate": 1.796746323283686e-05,
1257
+ "loss": 0.2594,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.7205731832139202,
1262
+ "grad_norm": 1.3044480085372925,
1263
+ "learning_rate": 1.7940339263983112e-05,
1264
+ "loss": 0.2563,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.7246673490276356,
1269
+ "grad_norm": 1.288320779800415,
1270
+ "learning_rate": 1.791305627069662e-05,
1271
+ "loss": 0.2478,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.7287615148413511,
1276
+ "grad_norm": 1.2802083492279053,
1277
+ "learning_rate": 1.7885614799385086e-05,
1278
+ "loss": 0.2331,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.7328556806550666,
1283
+ "grad_norm": 1.3979520797729492,
1284
+ "learning_rate": 1.785801539963012e-05,
1285
+ "loss": 0.2458,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.736949846468782,
1290
+ "grad_norm": 1.2247169017791748,
1291
+ "learning_rate": 1.7830258624176224e-05,
1292
+ "loss": 0.2132,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.7410440122824974,
1297
+ "grad_norm": 1.4145004749298096,
1298
+ "learning_rate": 1.7802345028919728e-05,
1299
+ "loss": 0.2402,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.7451381780962129,
1304
+ "grad_norm": 1.5720893144607544,
1305
+ "learning_rate": 1.777427517289766e-05,
1306
+ "loss": 0.258,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.7492323439099283,
1311
+ "grad_norm": 1.272928237915039,
1312
+ "learning_rate": 1.7746049618276545e-05,
1313
+ "loss": 0.2501,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.7533265097236438,
1318
+ "grad_norm": 1.4003905057907104,
1319
+ "learning_rate": 1.7717668930341152e-05,
1320
+ "loss": 0.2567,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.7574206755373593,
1325
+ "grad_norm": 1.4310050010681152,
1326
+ "learning_rate": 1.768913367748316e-05,
1327
+ "loss": 0.2443,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.7615148413510747,
1332
+ "grad_norm": 1.480718731880188,
1333
+ "learning_rate": 1.766044443118978e-05,
1334
+ "loss": 0.2564,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.7656090071647902,
1339
+ "grad_norm": 1.331586480140686,
1340
+ "learning_rate": 1.7631601766032337e-05,
1341
+ "loss": 0.2467,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.7697031729785057,
1346
+ "grad_norm": 1.2713260650634766,
1347
+ "learning_rate": 1.7602606259654704e-05,
1348
+ "loss": 0.2406,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.7737973387922211,
1353
+ "grad_norm": 1.4929317235946655,
1354
+ "learning_rate": 1.7573458492761802e-05,
1355
+ "loss": 0.2515,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.7778915046059366,
1360
+ "grad_norm": 1.117374062538147,
1361
+ "learning_rate": 1.7544159049107902e-05,
1362
+ "loss": 0.2165,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.781985670419652,
1367
+ "grad_norm": 1.2868603467941284,
1368
+ "learning_rate": 1.7514708515485002e-05,
1369
+ "loss": 0.2469,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.7860798362333674,
1374
+ "grad_norm": 1.3611894845962524,
1375
+ "learning_rate": 1.7485107481711014e-05,
1376
+ "loss": 0.2468,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.7901740020470829,
1381
+ "grad_norm": 1.3682395219802856,
1382
+ "learning_rate": 1.7455356540617988e-05,
1383
+ "loss": 0.2548,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.7942681678607983,
1388
+ "grad_norm": 1.2504215240478516,
1389
+ "learning_rate": 1.7425456288040236e-05,
1390
+ "loss": 0.2563,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.7983623336745138,
1395
+ "grad_norm": 1.3082585334777832,
1396
+ "learning_rate": 1.7395407322802374e-05,
1397
+ "loss": 0.232,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.8024564994882293,
1402
+ "grad_norm": 1.409508466720581,
1403
+ "learning_rate": 1.736521024670737e-05,
1404
+ "loss": 0.2438,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.8065506653019447,
1409
+ "grad_norm": 1.1714893579483032,
1410
+ "learning_rate": 1.733486566452446e-05,
1411
+ "loss": 0.2201,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.8106448311156602,
1416
+ "grad_norm": 1.3167288303375244,
1417
+ "learning_rate": 1.7304374183977032e-05,
1418
+ "loss": 0.2359,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.8147389969293757,
1423
+ "grad_norm": 1.2892719507217407,
1424
+ "learning_rate": 1.7273736415730488e-05,
1425
+ "loss": 0.2373,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.8188331627430911,
1430
+ "grad_norm": 1.2318534851074219,
1431
+ "learning_rate": 1.7242952973379983e-05,
1432
+ "loss": 0.2493,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.8229273285568065,
1437
+ "grad_norm": 1.2666089534759521,
1438
+ "learning_rate": 1.7212024473438145e-05,
1439
+ "loss": 0.2335,
1440
+ "step": 201
1441
+ },
1442
+ {
1443
+ "epoch": 0.827021494370522,
1444
+ "grad_norm": 1.3021701574325562,
1445
+ "learning_rate": 1.7180951535322742e-05,
1446
+ "loss": 0.2457,
1447
+ "step": 202
1448
+ },
1449
+ {
1450
+ "epoch": 0.8311156601842374,
1451
+ "grad_norm": 1.2390035390853882,
1452
+ "learning_rate": 1.7149734781344247e-05,
1453
+ "loss": 0.2317,
1454
+ "step": 203
1455
+ },
1456
+ {
1457
+ "epoch": 0.8352098259979529,
1458
+ "grad_norm": 1.373651146888733,
1459
+ "learning_rate": 1.7118374836693407e-05,
1460
+ "loss": 0.2477,
1461
+ "step": 204
1462
+ },
1463
+ {
1464
+ "epoch": 0.8393039918116684,
1465
+ "grad_norm": 1.4125158786773682,
1466
+ "learning_rate": 1.7086872329428702e-05,
1467
+ "loss": 0.2716,
1468
+ "step": 205
1469
+ },
1470
+ {
1471
+ "epoch": 0.8433981576253838,
1472
+ "grad_norm": 1.3470803499221802,
1473
+ "learning_rate": 1.705522789046377e-05,
1474
+ "loss": 0.264,
1475
+ "step": 206
1476
+ },
1477
+ {
1478
+ "epoch": 0.8474923234390993,
1479
+ "grad_norm": 1.419498324394226,
1480
+ "learning_rate": 1.7023442153554776e-05,
1481
+ "loss": 0.2626,
1482
+ "step": 207
1483
+ },
1484
+ {
1485
+ "epoch": 0.8515864892528148,
1486
+ "grad_norm": 1.4023360013961792,
1487
+ "learning_rate": 1.6991515755287715e-05,
1488
+ "loss": 0.2786,
1489
+ "step": 208
1490
+ },
1491
+ {
1492
+ "epoch": 0.8556806550665302,
1493
+ "grad_norm": 1.3539841175079346,
1494
+ "learning_rate": 1.695944933506567e-05,
1495
+ "loss": 0.2623,
1496
+ "step": 209
1497
+ },
1498
+ {
1499
+ "epoch": 0.8597748208802457,
1500
+ "grad_norm": 1.4278448820114136,
1501
+ "learning_rate": 1.6927243535095995e-05,
1502
+ "loss": 0.2491,
1503
+ "step": 210
1504
+ },
1505
+ {
1506
+ "epoch": 0.8638689866939611,
1507
+ "grad_norm": 1.4281779527664185,
1508
+ "learning_rate": 1.6894899000377462e-05,
1509
+ "loss": 0.2303,
1510
+ "step": 211
1511
+ },
1512
+ {
1513
+ "epoch": 0.8679631525076765,
1514
+ "grad_norm": 1.2435628175735474,
1515
+ "learning_rate": 1.686241637868734e-05,
1516
+ "loss": 0.254,
1517
+ "step": 212
1518
+ },
1519
+ {
1520
+ "epoch": 0.872057318321392,
1521
+ "grad_norm": 1.2799077033996582,
1522
+ "learning_rate": 1.6829796320568416e-05,
1523
+ "loss": 0.2253,
1524
+ "step": 213
1525
+ },
1526
+ {
1527
+ "epoch": 0.8761514841351075,
1528
+ "grad_norm": 1.4002091884613037,
1529
+ "learning_rate": 1.6797039479315994e-05,
1530
+ "loss": 0.2568,
1531
+ "step": 214
1532
+ },
1533
+ {
1534
+ "epoch": 0.8802456499488229,
1535
+ "grad_norm": 1.2796311378479004,
1536
+ "learning_rate": 1.6764146510964762e-05,
1537
+ "loss": 0.2488,
1538
+ "step": 215
1539
+ },
1540
+ {
1541
+ "epoch": 0.8843398157625384,
1542
+ "grad_norm": 1.28677237033844,
1543
+ "learning_rate": 1.67311180742757e-05,
1544
+ "loss": 0.2619,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.8884339815762539,
1549
+ "grad_norm": 1.5529658794403076,
1550
+ "learning_rate": 1.669795483072287e-05,
1551
+ "loss": 0.2312,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.8925281473899693,
1556
+ "grad_norm": 1.2904109954833984,
1557
+ "learning_rate": 1.6664657444480145e-05,
1558
+ "loss": 0.2366,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.8966223132036848,
1563
+ "grad_norm": 1.2689939737319946,
1564
+ "learning_rate": 1.6631226582407954e-05,
1565
+ "loss": 0.2446,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.9007164790174002,
1570
+ "grad_norm": 1.2608931064605713,
1571
+ "learning_rate": 1.6597662914039885e-05,
1572
+ "loss": 0.2419,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.9048106448311156,
1577
+ "grad_norm": 1.2563594579696655,
1578
+ "learning_rate": 1.65639671115693e-05,
1579
+ "loss": 0.2363,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.9089048106448311,
1584
+ "grad_norm": 1.320057988166809,
1585
+ "learning_rate": 1.653013984983585e-05,
1586
+ "loss": 0.2508,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.9129989764585466,
1591
+ "grad_norm": 1.2236367464065552,
1592
+ "learning_rate": 1.6496181806312005e-05,
1593
+ "loss": 0.2263,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.917093142272262,
1598
+ "grad_norm": 1.293455958366394,
1599
+ "learning_rate": 1.6462093661089432e-05,
1600
+ "loss": 0.2504,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.9211873080859775,
1605
+ "grad_norm": 1.3519924879074097,
1606
+ "learning_rate": 1.6427876096865394e-05,
1607
+ "loss": 0.2458,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.925281473899693,
1612
+ "grad_norm": 1.1655514240264893,
1613
+ "learning_rate": 1.6393529798929103e-05,
1614
+ "loss": 0.249,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.9293756397134084,
1619
+ "grad_norm": 1.3402174711227417,
1620
+ "learning_rate": 1.635905545514795e-05,
1621
+ "loss": 0.2426,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.9334698055271239,
1626
+ "grad_norm": 1.3474458456039429,
1627
+ "learning_rate": 1.6324453755953772e-05,
1628
+ "loss": 0.2497,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.9375639713408394,
1633
+ "grad_norm": 1.2284787893295288,
1634
+ "learning_rate": 1.6289725394328998e-05,
1635
+ "loss": 0.2438,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.9416581371545547,
1640
+ "grad_norm": 1.2306231260299683,
1641
+ "learning_rate": 1.6254871065792776e-05,
1642
+ "loss": 0.248,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.9457523029682702,
1647
+ "grad_norm": 1.3834123611450195,
1648
+ "learning_rate": 1.621989146838704e-05,
1649
+ "loss": 0.2798,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.9498464687819856,
1654
+ "grad_norm": 1.333827257156372,
1655
+ "learning_rate": 1.618478730266255e-05,
1656
+ "loss": 0.2585,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.9539406345957011,
1661
+ "grad_norm": 1.272150993347168,
1662
+ "learning_rate": 1.6149559271664835e-05,
1663
+ "loss": 0.2512,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.9580348004094166,
1668
+ "grad_norm": 1.3800173997879028,
1669
+ "learning_rate": 1.6114208080920125e-05,
1670
+ "loss": 0.2483,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.962128966223132,
1675
+ "grad_norm": 1.2623674869537354,
1676
+ "learning_rate": 1.607873443842122e-05,
1677
+ "loss": 0.2447,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.9662231320368475,
1682
+ "grad_norm": 1.2797845602035522,
1683
+ "learning_rate": 1.6043139054613326e-05,
1684
+ "loss": 0.2258,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.970317297850563,
1689
+ "grad_norm": 1.3689030408859253,
1690
+ "learning_rate": 1.600742264237979e-05,
1691
+ "loss": 0.247,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.9744114636642784,
1696
+ "grad_norm": 1.3384076356887817,
1697
+ "learning_rate": 1.5971585917027864e-05,
1698
+ "loss": 0.2286,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.9785056294779939,
1703
+ "grad_norm": 1.210942268371582,
1704
+ "learning_rate": 1.5935629596274345e-05,
1705
+ "loss": 0.2402,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.9825997952917093,
1710
+ "grad_norm": 1.2547039985656738,
1711
+ "learning_rate": 1.5899554400231233e-05,
1712
+ "loss": 0.2386,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.9866939611054247,
1717
+ "grad_norm": 1.337138056755066,
1718
+ "learning_rate": 1.586336105139127e-05,
1719
+ "loss": 0.2686,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.9907881269191402,
1724
+ "grad_norm": 1.273237943649292,
1725
+ "learning_rate": 1.5827050274613512e-05,
1726
+ "loss": 0.2653,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.9948822927328557,
1731
+ "grad_norm": 1.3556797504425049,
1732
+ "learning_rate": 1.579062279710879e-05,
1733
+ "loss": 0.2365,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.9989764585465711,
1738
+ "grad_norm": 1.2234649658203125,
1739
+ "learning_rate": 1.5754079348425137e-05,
1740
+ "loss": 0.239,
1741
+ "step": 244
1742
+ }
1743
+ ],
1744
+ "logging_steps": 1,
1745
+ "max_steps": 732,
1746
+ "num_input_tokens_seen": 0,
1747
+ "num_train_epochs": 3,
1748
+ "save_steps": 244,
1749
+ "stateful_callbacks": {
1750
+ "TrainerControl": {
1751
+ "args": {
1752
+ "should_epoch_stop": false,
1753
+ "should_evaluate": false,
1754
+ "should_log": false,
1755
+ "should_save": true,
1756
+ "should_training_stop": false
1757
+ },
1758
+ "attributes": {}
1759
+ }
1760
+ },
1761
+ "total_flos": 3.94188710905643e+17,
1762
+ "train_batch_size": 8,
1763
+ "trial_name": null,
1764
+ "trial_params": null
1765
+ }
3b-w-cot+/checkpoint-244/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:632e641a15180cc852702434a272df94b8012efb84c5e296eb59b1554cdab170
3
+ size 10744
3b-w-cot+/checkpoint-244/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
3b-w-cot+/checkpoint-244/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
3b-w-cot+/checkpoint-488/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-w-cot+/checkpoint-488/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ckpt/3b-w-cot/checkpoint-747",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.49.0",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
3b-w-cot+/checkpoint-488/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
3b-w-cot+/checkpoint-488/global_step487/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42d46bdbf299711fbd8125eb8acb726e12a4f88d9fcccb46d9547f789bc6ba13
3
+ size 9306058322
3b-w-cot+/checkpoint-488/global_step487/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1187b7d477a60d412e23458de4b2cd75b8c1b327e898b5ad66e98b037b7be12
3
+ size 9306060690
3b-w-cot+/checkpoint-488/global_step487/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6483efeebfee3a33c5ad10ecf28e2cf27546b77b1c2be25e152137ec67effc6f
3
+ size 6171993592
3b-w-cot+/checkpoint-488/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step487
3b-w-cot+/checkpoint-488/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-w-cot+/checkpoint-488/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe067b847f63d4cf5dc966e0b39c3c0ae6b5c580b4fc58449eeca26fa528b266
3
+ size 4957560304
3b-w-cot+/checkpoint-488/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2297c2359849d5acc982147817db1c90cf1170f8f42c305f65c42e9a49bf56e
3
+ size 1836696752
3b-w-cot+/checkpoint-488/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6794207232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-w-cot+/checkpoint-488/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dcb161b22b2558dbf7e3f8c871050cec383d11a40423fab11f18d5e630639bf
3
+ size 14512
3b-w-cot+/checkpoint-488/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d50af6aef769414a6f28fa1b1bc51ce707dc8ecd15474e03f99a2f10fde086be
3
+ size 14512
3b-w-cot+/checkpoint-488/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d8b2a59c30f5e09b1d7ce944fea889fdfc7000e147a68a8ad08ea9263213eb2
3
+ size 1064
3b-w-cot+/checkpoint-488/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
3b-w-cot+/checkpoint-488/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
3b-w-cot+/checkpoint-488/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
3b-w-cot+/checkpoint-488/trainer_state.json ADDED
@@ -0,0 +1,3497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9948822927328558,
5
+ "eval_steps": 82,
6
+ "global_step": 488,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0040941658137154556,
13
+ "grad_norm": 8.007163047790527,
14
+ "learning_rate": 6.666666666666667e-07,
15
+ "loss": 0.477,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0040941658137154556,
20
+ "eval_loss": 0.8367487192153931,
21
+ "eval_runtime": 4.4844,
22
+ "eval_samples_per_second": 17.617,
23
+ "eval_steps_per_second": 2.23,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.008188331627430911,
28
+ "grad_norm": 8.800883293151855,
29
+ "learning_rate": 1.3333333333333334e-06,
30
+ "loss": 0.6282,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.012282497441146366,
35
+ "grad_norm": 9.306445121765137,
36
+ "learning_rate": 2.0000000000000003e-06,
37
+ "loss": 0.6202,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.016376663254861822,
42
+ "grad_norm": 10.017245292663574,
43
+ "learning_rate": 2.666666666666667e-06,
44
+ "loss": 0.6161,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.02047082906857728,
49
+ "grad_norm": 9.14148235321045,
50
+ "learning_rate": 3.3333333333333333e-06,
51
+ "loss": 0.6081,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.02456499488229273,
56
+ "grad_norm": 8.813340187072754,
57
+ "learning_rate": 4.000000000000001e-06,
58
+ "loss": 0.5697,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.028659160696008188,
63
+ "grad_norm": 6.7533745765686035,
64
+ "learning_rate": 4.666666666666667e-06,
65
+ "loss": 0.4834,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.032753326509723645,
70
+ "grad_norm": 6.1987481117248535,
71
+ "learning_rate": 5.333333333333334e-06,
72
+ "loss": 0.4857,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.0368474923234391,
77
+ "grad_norm": 2.4827005863189697,
78
+ "learning_rate": 6e-06,
79
+ "loss": 0.3713,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.04094165813715456,
84
+ "grad_norm": 2.163064956665039,
85
+ "learning_rate": 6.666666666666667e-06,
86
+ "loss": 0.3284,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.04503582395087001,
91
+ "grad_norm": 1.9997942447662354,
92
+ "learning_rate": 7.333333333333333e-06,
93
+ "loss": 0.3289,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.04912998976458546,
98
+ "grad_norm": 2.7956204414367676,
99
+ "learning_rate": 8.000000000000001e-06,
100
+ "loss": 0.3208,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.05322415557830092,
105
+ "grad_norm": 2.8886733055114746,
106
+ "learning_rate": 8.666666666666668e-06,
107
+ "loss": 0.3123,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.057318321392016376,
112
+ "grad_norm": 2.217071771621704,
113
+ "learning_rate": 9.333333333333334e-06,
114
+ "loss": 0.2881,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.06141248720573183,
119
+ "grad_norm": 1.9985229969024658,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.283,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.06550665301944729,
126
+ "grad_norm": 1.8881174325942993,
127
+ "learning_rate": 1.0666666666666667e-05,
128
+ "loss": 0.2616,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.06960081883316274,
133
+ "grad_norm": 1.9551236629486084,
134
+ "learning_rate": 1.1333333333333334e-05,
135
+ "loss": 0.2894,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.0736949846468782,
140
+ "grad_norm": 1.8677968978881836,
141
+ "learning_rate": 1.2e-05,
142
+ "loss": 0.2328,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.07778915046059365,
147
+ "grad_norm": 1.9170935153961182,
148
+ "learning_rate": 1.2666666666666667e-05,
149
+ "loss": 0.2577,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.08188331627430911,
154
+ "grad_norm": 2.189279794692993,
155
+ "learning_rate": 1.3333333333333333e-05,
156
+ "loss": 0.2555,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.08597748208802457,
161
+ "grad_norm": 3.202075242996216,
162
+ "learning_rate": 1.4e-05,
163
+ "loss": 0.2647,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.09007164790174002,
168
+ "grad_norm": 2.774186372756958,
169
+ "learning_rate": 1.4666666666666666e-05,
170
+ "loss": 0.2531,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.09416581371545547,
175
+ "grad_norm": 2.0601961612701416,
176
+ "learning_rate": 1.5333333333333334e-05,
177
+ "loss": 0.2654,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.09825997952917093,
182
+ "grad_norm": 1.781900405883789,
183
+ "learning_rate": 1.6000000000000003e-05,
184
+ "loss": 0.2358,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.1023541453428864,
189
+ "grad_norm": 1.8549216985702515,
190
+ "learning_rate": 1.6666666666666667e-05,
191
+ "loss": 0.2362,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.10644831115660185,
196
+ "grad_norm": 2.1376802921295166,
197
+ "learning_rate": 1.7333333333333336e-05,
198
+ "loss": 0.2334,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.1105424769703173,
203
+ "grad_norm": 2.134582281112671,
204
+ "learning_rate": 1.8e-05,
205
+ "loss": 0.267,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.11463664278403275,
210
+ "grad_norm": 1.6425909996032715,
211
+ "learning_rate": 1.866666666666667e-05,
212
+ "loss": 0.2184,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.1187308085977482,
217
+ "grad_norm": 1.601938009262085,
218
+ "learning_rate": 1.9333333333333333e-05,
219
+ "loss": 0.256,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.12282497441146366,
224
+ "grad_norm": 1.626160740852356,
225
+ "learning_rate": 2e-05,
226
+ "loss": 0.2548,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.1269191402251791,
231
+ "grad_norm": 1.6894042491912842,
232
+ "learning_rate": 1.999989986294826e-05,
233
+ "loss": 0.2438,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.13101330603889458,
238
+ "grad_norm": 1.6300302743911743,
239
+ "learning_rate": 1.9999599453798523e-05,
240
+ "loss": 0.2273,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.13510747185261002,
245
+ "grad_norm": 1.6301401853561401,
246
+ "learning_rate": 1.999909877856721e-05,
247
+ "loss": 0.2539,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.13920163766632548,
252
+ "grad_norm": 1.6974273920059204,
253
+ "learning_rate": 1.9998397847281548e-05,
254
+ "loss": 0.256,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.14329580348004095,
259
+ "grad_norm": 1.5356749296188354,
260
+ "learning_rate": 1.9997496673979375e-05,
261
+ "loss": 0.2278,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.1473899692937564,
266
+ "grad_norm": 1.6304699182510376,
267
+ "learning_rate": 1.9996395276708856e-05,
268
+ "loss": 0.2488,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.15148413510747186,
273
+ "grad_norm": 1.6241912841796875,
274
+ "learning_rate": 1.999509367752813e-05,
275
+ "loss": 0.2407,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.1555783009211873,
280
+ "grad_norm": 1.6954501867294312,
281
+ "learning_rate": 1.9993591902504854e-05,
282
+ "loss": 0.2279,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.15967246673490276,
287
+ "grad_norm": 1.5775200128555298,
288
+ "learning_rate": 1.9991889981715696e-05,
289
+ "loss": 0.2443,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.16376663254861823,
294
+ "grad_norm": 1.6417704820632935,
295
+ "learning_rate": 1.9989987949245725e-05,
296
+ "loss": 0.2498,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.16786079836233367,
301
+ "grad_norm": 1.6866360902786255,
302
+ "learning_rate": 1.9987885843187717e-05,
303
+ "loss": 0.2496,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.17195496417604914,
308
+ "grad_norm": 1.6979321241378784,
309
+ "learning_rate": 1.9985583705641418e-05,
310
+ "loss": 0.2721,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.17604912998976457,
315
+ "grad_norm": 1.676047682762146,
316
+ "learning_rate": 1.9983081582712684e-05,
317
+ "loss": 0.2506,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.18014329580348004,
322
+ "grad_norm": 1.7262601852416992,
323
+ "learning_rate": 1.998037952451255e-05,
324
+ "loss": 0.2371,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.1842374616171955,
329
+ "grad_norm": 1.4194152355194092,
330
+ "learning_rate": 1.9977477585156252e-05,
331
+ "loss": 0.2619,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.18833162743091095,
336
+ "grad_norm": 1.5654889345169067,
337
+ "learning_rate": 1.9974375822762117e-05,
338
+ "loss": 0.2299,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.19242579324462641,
343
+ "grad_norm": 1.844489336013794,
344
+ "learning_rate": 1.9971074299450414e-05,
345
+ "loss": 0.2692,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.19651995905834185,
350
+ "grad_norm": 1.5128370523452759,
351
+ "learning_rate": 1.9967573081342103e-05,
352
+ "loss": 0.2589,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.20061412487205732,
357
+ "grad_norm": 1.5005507469177246,
358
+ "learning_rate": 1.9963872238557516e-05,
359
+ "loss": 0.2578,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.2047082906857728,
364
+ "grad_norm": 1.5974067449569702,
365
+ "learning_rate": 1.9959971845214953e-05,
366
+ "loss": 0.2494,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.20880245649948823,
371
+ "grad_norm": 1.5728641748428345,
372
+ "learning_rate": 1.9955871979429188e-05,
373
+ "loss": 0.2496,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.2128966223132037,
378
+ "grad_norm": 1.5953929424285889,
379
+ "learning_rate": 1.9951572723309918e-05,
380
+ "loss": 0.2429,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.21699078812691913,
385
+ "grad_norm": 1.7769081592559814,
386
+ "learning_rate": 1.9947074162960113e-05,
387
+ "loss": 0.252,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.2210849539406346,
392
+ "grad_norm": 1.6964116096496582,
393
+ "learning_rate": 1.9942376388474282e-05,
394
+ "loss": 0.2651,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.22517911975435004,
399
+ "grad_norm": 1.5599926710128784,
400
+ "learning_rate": 1.993747949393668e-05,
401
+ "loss": 0.2193,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.2292732855680655,
406
+ "grad_norm": 1.524835467338562,
407
+ "learning_rate": 1.9932383577419432e-05,
408
+ "loss": 0.2361,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.23336745138178097,
413
+ "grad_norm": 1.6240477561950684,
414
+ "learning_rate": 1.992708874098054e-05,
415
+ "loss": 0.2563,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.2374616171954964,
420
+ "grad_norm": 1.6357301473617554,
421
+ "learning_rate": 1.9921595090661872e-05,
422
+ "loss": 0.2456,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.24155578300921188,
427
+ "grad_norm": 1.5650979280471802,
428
+ "learning_rate": 1.991590273648702e-05,
429
+ "loss": 0.2512,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.24564994882292732,
434
+ "grad_norm": 1.4107614755630493,
435
+ "learning_rate": 1.9910011792459086e-05,
436
+ "loss": 0.2539,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.24974411463664278,
441
+ "grad_norm": 1.3979556560516357,
442
+ "learning_rate": 1.9903922376558432e-05,
443
+ "loss": 0.2348,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.2538382804503582,
448
+ "grad_norm": 1.4066411256790161,
449
+ "learning_rate": 1.989763461074029e-05,
450
+ "loss": 0.2419,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.2579324462640737,
455
+ "grad_norm": 1.533858060836792,
456
+ "learning_rate": 1.989114862093232e-05,
457
+ "loss": 0.252,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.26202661207778916,
462
+ "grad_norm": 1.4007140398025513,
463
+ "learning_rate": 1.9884464537032103e-05,
464
+ "loss": 0.2379,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.2661207778915046,
469
+ "grad_norm": 1.3841203451156616,
470
+ "learning_rate": 1.9877582492904533e-05,
471
+ "loss": 0.2377,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.27021494370522003,
476
+ "grad_norm": 1.274598479270935,
477
+ "learning_rate": 1.9870502626379127e-05,
478
+ "loss": 0.2364,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.2743091095189355,
483
+ "grad_norm": 1.59529447555542,
484
+ "learning_rate": 1.9863225079247286e-05,
485
+ "loss": 0.2647,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.27840327533265097,
490
+ "grad_norm": 1.4986138343811035,
491
+ "learning_rate": 1.985574999725943e-05,
492
+ "loss": 0.264,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.28249744114636643,
497
+ "grad_norm": 1.4692142009735107,
498
+ "learning_rate": 1.9848077530122083e-05,
499
+ "loss": 0.2475,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.2865916069600819,
504
+ "grad_norm": 1.5602682828903198,
505
+ "learning_rate": 1.9840207831494903e-05,
506
+ "loss": 0.244,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.2906857727737973,
511
+ "grad_norm": 1.5084633827209473,
512
+ "learning_rate": 1.983214105898757e-05,
513
+ "loss": 0.2442,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.2947799385875128,
518
+ "grad_norm": 1.451074242591858,
519
+ "learning_rate": 1.9823877374156647e-05,
520
+ "loss": 0.2673,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.29887410440122825,
525
+ "grad_norm": 1.4784746170043945,
526
+ "learning_rate": 1.9815416942502346e-05,
527
+ "loss": 0.2441,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.3029682702149437,
532
+ "grad_norm": 1.368421196937561,
533
+ "learning_rate": 1.98067599334652e-05,
534
+ "loss": 0.2439,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.3070624360286592,
539
+ "grad_norm": 1.4379913806915283,
540
+ "learning_rate": 1.979790652042268e-05,
541
+ "loss": 0.2238,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.3111566018423746,
546
+ "grad_norm": 1.5823594331741333,
547
+ "learning_rate": 1.978885688068572e-05,
548
+ "loss": 0.2725,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.31525076765609006,
553
+ "grad_norm": 1.5007753372192383,
554
+ "learning_rate": 1.9779611195495177e-05,
555
+ "loss": 0.2375,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.3193449334698055,
560
+ "grad_norm": 1.473763346672058,
561
+ "learning_rate": 1.977016965001817e-05,
562
+ "loss": 0.2611,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.323439099283521,
567
+ "grad_norm": 1.7358968257904053,
568
+ "learning_rate": 1.976053243334442e-05,
569
+ "loss": 0.2623,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.32753326509723646,
574
+ "grad_norm": 1.5595204830169678,
575
+ "learning_rate": 1.9750699738482403e-05,
576
+ "loss": 0.2676,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.33162743091095187,
581
+ "grad_norm": 1.685775637626648,
582
+ "learning_rate": 1.9740671762355548e-05,
583
+ "loss": 0.267,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.33572159672466734,
588
+ "grad_norm": 1.3360930681228638,
589
+ "learning_rate": 1.973044870579824e-05,
590
+ "loss": 0.2339,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.33572159672466734,
595
+ "eval_loss": 0.27538755536079407,
596
+ "eval_runtime": 5.5418,
597
+ "eval_samples_per_second": 14.255,
598
+ "eval_steps_per_second": 1.804,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.3398157625383828,
603
+ "grad_norm": 1.7223079204559326,
604
+ "learning_rate": 1.972003077355183e-05,
605
+ "loss": 0.2843,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.34390992835209827,
610
+ "grad_norm": 1.5389612913131714,
611
+ "learning_rate": 1.9709418174260523e-05,
612
+ "loss": 0.2604,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.34800409416581374,
617
+ "grad_norm": 1.3990126848220825,
618
+ "learning_rate": 1.9698611120467196e-05,
619
+ "loss": 0.2588,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.35209825997952915,
624
+ "grad_norm": 1.3090544939041138,
625
+ "learning_rate": 1.9687609828609156e-05,
626
+ "loss": 0.2264,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.3561924257932446,
631
+ "grad_norm": 1.3547587394714355,
632
+ "learning_rate": 1.9676414519013782e-05,
633
+ "loss": 0.2436,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.3602865916069601,
638
+ "grad_norm": 1.7848924398422241,
639
+ "learning_rate": 1.966502541589414e-05,
640
+ "loss": 0.2617,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.36438075742067555,
645
+ "grad_norm": 1.450150728225708,
646
+ "learning_rate": 1.965344274734447e-05,
647
+ "loss": 0.2456,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.368474923234391,
652
+ "grad_norm": 1.5955520868301392,
653
+ "learning_rate": 1.9641666745335626e-05,
654
+ "loss": 0.2571,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.3725690890481064,
659
+ "grad_norm": 1.4538159370422363,
660
+ "learning_rate": 1.9629697645710432e-05,
661
+ "loss": 0.2552,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.3766632548618219,
666
+ "grad_norm": 1.4258908033370972,
667
+ "learning_rate": 1.961753568817896e-05,
668
+ "loss": 0.2402,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.38075742067553736,
673
+ "grad_norm": 1.463593602180481,
674
+ "learning_rate": 1.9605181116313725e-05,
675
+ "loss": 0.2612,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.38485158648925283,
680
+ "grad_norm": 1.4867630004882812,
681
+ "learning_rate": 1.9592634177544803e-05,
682
+ "loss": 0.2272,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.3889457523029683,
687
+ "grad_norm": 1.4335721731185913,
688
+ "learning_rate": 1.957989512315489e-05,
689
+ "loss": 0.2562,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.3930399181166837,
694
+ "grad_norm": 1.3976503610610962,
695
+ "learning_rate": 1.9566964208274254e-05,
696
+ "loss": 0.2527,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.3971340839303992,
701
+ "grad_norm": 1.455560564994812,
702
+ "learning_rate": 1.9553841691875632e-05,
703
+ "loss": 0.2617,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.40122824974411464,
708
+ "grad_norm": 1.319207787513733,
709
+ "learning_rate": 1.9540527836769047e-05,
710
+ "loss": 0.251,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.4053224155578301,
715
+ "grad_norm": 1.3503410816192627,
716
+ "learning_rate": 1.9527022909596537e-05,
717
+ "loss": 0.253,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.4094165813715456,
722
+ "grad_norm": 1.472091555595398,
723
+ "learning_rate": 1.951332718082682e-05,
724
+ "loss": 0.2935,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.413510747185261,
729
+ "grad_norm": 1.4811311960220337,
730
+ "learning_rate": 1.9499440924749878e-05,
731
+ "loss": 0.261,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.41760491299897645,
736
+ "grad_norm": 1.595140814781189,
737
+ "learning_rate": 1.9485364419471454e-05,
738
+ "loss": 0.2703,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.4216990788126919,
743
+ "grad_norm": 1.3853557109832764,
744
+ "learning_rate": 1.9471097946907506e-05,
745
+ "loss": 0.2345,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.4257932446264074,
750
+ "grad_norm": 1.5886335372924805,
751
+ "learning_rate": 1.9456641792778527e-05,
752
+ "loss": 0.269,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.42988741044012285,
757
+ "grad_norm": 1.3403784036636353,
758
+ "learning_rate": 1.9441996246603848e-05,
759
+ "loss": 0.234,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.43398157625383826,
764
+ "grad_norm": 1.4540488719940186,
765
+ "learning_rate": 1.9427161601695833e-05,
766
+ "loss": 0.246,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.43807574206755373,
771
+ "grad_norm": 1.5493131875991821,
772
+ "learning_rate": 1.9412138155154e-05,
773
+ "loss": 0.2284,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.4421699078812692,
778
+ "grad_norm": 1.290971279144287,
779
+ "learning_rate": 1.9396926207859085e-05,
780
+ "loss": 0.2392,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.44626407369498466,
785
+ "grad_norm": 1.4140104055404663,
786
+ "learning_rate": 1.9381526064466995e-05,
787
+ "loss": 0.2554,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.4503582395087001,
792
+ "grad_norm": 1.7200373411178589,
793
+ "learning_rate": 1.9365938033402715e-05,
794
+ "loss": 0.2359,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.45445240532241554,
799
+ "grad_norm": 1.2797805070877075,
800
+ "learning_rate": 1.9350162426854152e-05,
801
+ "loss": 0.2321,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.458546571136131,
806
+ "grad_norm": 1.326955795288086,
807
+ "learning_rate": 1.933419956076584e-05,
808
+ "loss": 0.2516,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.4626407369498465,
813
+ "grad_norm": 1.510201334953308,
814
+ "learning_rate": 1.9318049754832656e-05,
815
+ "loss": 0.2467,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.46673490276356194,
820
+ "grad_norm": 2.9965062141418457,
821
+ "learning_rate": 1.9301713332493386e-05,
822
+ "loss": 0.2587,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.47082906857727735,
827
+ "grad_norm": 1.3663560152053833,
828
+ "learning_rate": 1.9285190620924267e-05,
829
+ "loss": 0.2535,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.4749232343909928,
834
+ "grad_norm": 1.1917448043823242,
835
+ "learning_rate": 1.926848195103242e-05,
836
+ "loss": 0.2292,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.4790174002047083,
841
+ "grad_norm": 1.3093336820602417,
842
+ "learning_rate": 1.925158765744924e-05,
843
+ "loss": 0.229,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.48311156601842375,
848
+ "grad_norm": 1.5121235847473145,
849
+ "learning_rate": 1.923450807852367e-05,
850
+ "loss": 0.2527,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.4872057318321392,
855
+ "grad_norm": 1.461378812789917,
856
+ "learning_rate": 1.9217243556315445e-05,
857
+ "loss": 0.2631,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.49129989764585463,
862
+ "grad_norm": 1.4177104234695435,
863
+ "learning_rate": 1.9199794436588244e-05,
864
+ "loss": 0.2378,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.4953940634595701,
869
+ "grad_norm": 1.5456838607788086,
870
+ "learning_rate": 1.9182161068802742e-05,
871
+ "loss": 0.2491,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.49948822927328557,
876
+ "grad_norm": 1.554958701133728,
877
+ "learning_rate": 1.916434380610963e-05,
878
+ "loss": 0.2461,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.503582395087001,
883
+ "grad_norm": 1.4894706010818481,
884
+ "learning_rate": 1.9146343005342546e-05,
885
+ "loss": 0.2823,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.5076765609007164,
890
+ "grad_norm": 1.359287142753601,
891
+ "learning_rate": 1.912815902701091e-05,
892
+ "loss": 0.2366,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.5117707267144319,
897
+ "grad_norm": 1.4244722127914429,
898
+ "learning_rate": 1.9109792235292715e-05,
899
+ "loss": 0.2398,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.5158648925281474,
904
+ "grad_norm": 1.4032812118530273,
905
+ "learning_rate": 1.909124299802724e-05,
906
+ "loss": 0.2601,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.5199590583418628,
911
+ "grad_norm": 1.5199010372161865,
912
+ "learning_rate": 1.9072511686707663e-05,
913
+ "loss": 0.2458,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.5240532241555783,
918
+ "grad_norm": 1.4342416524887085,
919
+ "learning_rate": 1.9053598676473656e-05,
920
+ "loss": 0.241,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.5281473899692938,
925
+ "grad_norm": 1.338181972503662,
926
+ "learning_rate": 1.9034504346103825e-05,
927
+ "loss": 0.2508,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.5322415557830092,
932
+ "grad_norm": 1.492775559425354,
933
+ "learning_rate": 1.9015229078008163e-05,
934
+ "loss": 0.2626,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.5363357215967247,
939
+ "grad_norm": 1.3123077154159546,
940
+ "learning_rate": 1.8995773258220374e-05,
941
+ "loss": 0.258,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.5404298874104401,
946
+ "grad_norm": 1.4001896381378174,
947
+ "learning_rate": 1.8976137276390145e-05,
948
+ "loss": 0.2425,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.5445240532241555,
953
+ "grad_norm": 1.3989671468734741,
954
+ "learning_rate": 1.8956321525775337e-05,
955
+ "loss": 0.2781,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.548618219037871,
960
+ "grad_norm": 1.260289192199707,
961
+ "learning_rate": 1.8936326403234125e-05,
962
+ "loss": 0.2432,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.5527123848515865,
967
+ "grad_norm": 1.308370590209961,
968
+ "learning_rate": 1.891615230921703e-05,
969
+ "loss": 0.2408,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.5568065506653019,
974
+ "grad_norm": 1.2668206691741943,
975
+ "learning_rate": 1.8895799647758912e-05,
976
+ "loss": 0.2408,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.5609007164790174,
981
+ "grad_norm": 1.4105634689331055,
982
+ "learning_rate": 1.8875268826470875e-05,
983
+ "loss": 0.2688,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.5649948822927329,
988
+ "grad_norm": 1.3877664804458618,
989
+ "learning_rate": 1.8854560256532098e-05,
990
+ "loss": 0.2379,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.5690890481064483,
995
+ "grad_norm": 1.2643476724624634,
996
+ "learning_rate": 1.8833674352681613e-05,
997
+ "loss": 0.2375,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.5731832139201638,
1002
+ "grad_norm": 1.6310402154922485,
1003
+ "learning_rate": 1.881261153320999e-05,
1004
+ "loss": 0.2435,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.5772773797338793,
1009
+ "grad_norm": 1.35072660446167,
1010
+ "learning_rate": 1.879137221995095e-05,
1011
+ "loss": 0.2293,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.5813715455475946,
1016
+ "grad_norm": 1.409683346748352,
1017
+ "learning_rate": 1.8769956838272937e-05,
1018
+ "loss": 0.2584,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.5854657113613101,
1023
+ "grad_norm": 1.4319274425506592,
1024
+ "learning_rate": 1.8748365817070586e-05,
1025
+ "loss": 0.2669,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.5895598771750256,
1030
+ "grad_norm": 1.4259189367294312,
1031
+ "learning_rate": 1.8726599588756144e-05,
1032
+ "loss": 0.2447,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.593654042988741,
1037
+ "grad_norm": 1.4267385005950928,
1038
+ "learning_rate": 1.8704658589250795e-05,
1039
+ "loss": 0.2567,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.5977482088024565,
1044
+ "grad_norm": 1.4896032810211182,
1045
+ "learning_rate": 1.868254325797594e-05,
1046
+ "loss": 0.2363,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.601842374616172,
1051
+ "grad_norm": 1.355659008026123,
1052
+ "learning_rate": 1.866025403784439e-05,
1053
+ "loss": 0.2481,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.6059365404298874,
1058
+ "grad_norm": 1.2849416732788086,
1059
+ "learning_rate": 1.8637791375251505e-05,
1060
+ "loss": 0.2631,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.6100307062436029,
1065
+ "grad_norm": 1.279733419418335,
1066
+ "learning_rate": 1.8615155720066247e-05,
1067
+ "loss": 0.2487,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.6141248720573184,
1072
+ "grad_norm": 1.370506763458252,
1073
+ "learning_rate": 1.859234752562217e-05,
1074
+ "loss": 0.245,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.6182190378710338,
1079
+ "grad_norm": 1.352271556854248,
1080
+ "learning_rate": 1.8569367248708343e-05,
1081
+ "loss": 0.227,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.6223132036847492,
1086
+ "grad_norm": 1.3176748752593994,
1087
+ "learning_rate": 1.8546215349560204e-05,
1088
+ "loss": 0.2484,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.6264073694984647,
1093
+ "grad_norm": 1.386770486831665,
1094
+ "learning_rate": 1.8522892291850335e-05,
1095
+ "loss": 0.257,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.6305015353121801,
1100
+ "grad_norm": 1.5251948833465576,
1101
+ "learning_rate": 1.849939854267919e-05,
1102
+ "loss": 0.2727,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.6345957011258956,
1107
+ "grad_norm": 1.378936767578125,
1108
+ "learning_rate": 1.847573457256571e-05,
1109
+ "loss": 0.2337,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.638689866939611,
1114
+ "grad_norm": 1.3500293493270874,
1115
+ "learning_rate": 1.845190085543795e-05,
1116
+ "loss": 0.2618,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.6427840327533265,
1121
+ "grad_norm": 1.4462950229644775,
1122
+ "learning_rate": 1.8427897868623535e-05,
1123
+ "loss": 0.2588,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.646878198567042,
1128
+ "grad_norm": 1.2208290100097656,
1129
+ "learning_rate": 1.840372609284013e-05,
1130
+ "loss": 0.2927,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.6509723643807575,
1135
+ "grad_norm": 1.3487396240234375,
1136
+ "learning_rate": 1.8379386012185813e-05,
1137
+ "loss": 0.2417,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.6550665301944729,
1142
+ "grad_norm": 1.2655378580093384,
1143
+ "learning_rate": 1.8354878114129368e-05,
1144
+ "loss": 0.2428,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.6591606960081884,
1149
+ "grad_norm": 1.181028962135315,
1150
+ "learning_rate": 1.8330202889500518e-05,
1151
+ "loss": 0.2397,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.6632548618219037,
1156
+ "grad_norm": 1.3897309303283691,
1157
+ "learning_rate": 1.8305360832480118e-05,
1158
+ "loss": 0.2276,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.6673490276356192,
1163
+ "grad_norm": 1.340640902519226,
1164
+ "learning_rate": 1.8280352440590236e-05,
1165
+ "loss": 0.2375,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.6714431934493347,
1170
+ "grad_norm": 1.5388420820236206,
1171
+ "learning_rate": 1.82551782146842e-05,
1172
+ "loss": 0.2318,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.6714431934493347,
1177
+ "eval_loss": 0.2667195796966553,
1178
+ "eval_runtime": 6.096,
1179
+ "eval_samples_per_second": 12.959,
1180
+ "eval_steps_per_second": 1.64,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.6755373592630501,
1185
+ "grad_norm": 1.4711631536483765,
1186
+ "learning_rate": 1.8229838658936566e-05,
1187
+ "loss": 0.2367,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.6796315250767656,
1192
+ "grad_norm": 1.3367588520050049,
1193
+ "learning_rate": 1.8204334280833005e-05,
1194
+ "loss": 0.2652,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.6837256908904811,
1199
+ "grad_norm": 1.5473802089691162,
1200
+ "learning_rate": 1.817866559116017e-05,
1201
+ "loss": 0.2693,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.6878198567041965,
1206
+ "grad_norm": 1.3539572954177856,
1207
+ "learning_rate": 1.8152833103995443e-05,
1208
+ "loss": 0.2431,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.691914022517912,
1213
+ "grad_norm": 1.3012574911117554,
1214
+ "learning_rate": 1.8126837336696645e-05,
1215
+ "loss": 0.2602,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.6960081883316275,
1220
+ "grad_norm": 1.3125128746032715,
1221
+ "learning_rate": 1.8100678809891668e-05,
1222
+ "loss": 0.2426,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.7001023541453428,
1227
+ "grad_norm": 1.2353239059448242,
1228
+ "learning_rate": 1.807435804746807e-05,
1229
+ "loss": 0.2176,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.7041965199590583,
1234
+ "grad_norm": 1.268622636795044,
1235
+ "learning_rate": 1.8047875576562556e-05,
1236
+ "loss": 0.2495,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.7082906857727738,
1241
+ "grad_norm": 1.3845950365066528,
1242
+ "learning_rate": 1.802123192755044e-05,
1243
+ "loss": 0.2643,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.7123848515864892,
1248
+ "grad_norm": 1.2450510263442993,
1249
+ "learning_rate": 1.7994427634035016e-05,
1250
+ "loss": 0.2445,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.7164790174002047,
1255
+ "grad_norm": 1.545483946800232,
1256
+ "learning_rate": 1.796746323283686e-05,
1257
+ "loss": 0.2594,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.7205731832139202,
1262
+ "grad_norm": 1.3044480085372925,
1263
+ "learning_rate": 1.7940339263983112e-05,
1264
+ "loss": 0.2563,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.7246673490276356,
1269
+ "grad_norm": 1.288320779800415,
1270
+ "learning_rate": 1.791305627069662e-05,
1271
+ "loss": 0.2478,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.7287615148413511,
1276
+ "grad_norm": 1.2802083492279053,
1277
+ "learning_rate": 1.7885614799385086e-05,
1278
+ "loss": 0.2331,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.7328556806550666,
1283
+ "grad_norm": 1.3979520797729492,
1284
+ "learning_rate": 1.785801539963012e-05,
1285
+ "loss": 0.2458,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.736949846468782,
1290
+ "grad_norm": 1.2247169017791748,
1291
+ "learning_rate": 1.7830258624176224e-05,
1292
+ "loss": 0.2132,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.7410440122824974,
1297
+ "grad_norm": 1.4145004749298096,
1298
+ "learning_rate": 1.7802345028919728e-05,
1299
+ "loss": 0.2402,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.7451381780962129,
1304
+ "grad_norm": 1.5720893144607544,
1305
+ "learning_rate": 1.777427517289766e-05,
1306
+ "loss": 0.258,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.7492323439099283,
1311
+ "grad_norm": 1.272928237915039,
1312
+ "learning_rate": 1.7746049618276545e-05,
1313
+ "loss": 0.2501,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.7533265097236438,
1318
+ "grad_norm": 1.4003905057907104,
1319
+ "learning_rate": 1.7717668930341152e-05,
1320
+ "loss": 0.2567,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.7574206755373593,
1325
+ "grad_norm": 1.4310050010681152,
1326
+ "learning_rate": 1.768913367748316e-05,
1327
+ "loss": 0.2443,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.7615148413510747,
1332
+ "grad_norm": 1.480718731880188,
1333
+ "learning_rate": 1.766044443118978e-05,
1334
+ "loss": 0.2564,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.7656090071647902,
1339
+ "grad_norm": 1.331586480140686,
1340
+ "learning_rate": 1.7631601766032337e-05,
1341
+ "loss": 0.2467,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.7697031729785057,
1346
+ "grad_norm": 1.2713260650634766,
1347
+ "learning_rate": 1.7602606259654704e-05,
1348
+ "loss": 0.2406,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.7737973387922211,
1353
+ "grad_norm": 1.4929317235946655,
1354
+ "learning_rate": 1.7573458492761802e-05,
1355
+ "loss": 0.2515,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.7778915046059366,
1360
+ "grad_norm": 1.117374062538147,
1361
+ "learning_rate": 1.7544159049107902e-05,
1362
+ "loss": 0.2165,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.781985670419652,
1367
+ "grad_norm": 1.2868603467941284,
1368
+ "learning_rate": 1.7514708515485002e-05,
1369
+ "loss": 0.2469,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.7860798362333674,
1374
+ "grad_norm": 1.3611894845962524,
1375
+ "learning_rate": 1.7485107481711014e-05,
1376
+ "loss": 0.2468,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.7901740020470829,
1381
+ "grad_norm": 1.3682395219802856,
1382
+ "learning_rate": 1.7455356540617988e-05,
1383
+ "loss": 0.2548,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.7942681678607983,
1388
+ "grad_norm": 1.2504215240478516,
1389
+ "learning_rate": 1.7425456288040236e-05,
1390
+ "loss": 0.2563,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.7983623336745138,
1395
+ "grad_norm": 1.3082585334777832,
1396
+ "learning_rate": 1.7395407322802374e-05,
1397
+ "loss": 0.232,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.8024564994882293,
1402
+ "grad_norm": 1.409508466720581,
1403
+ "learning_rate": 1.736521024670737e-05,
1404
+ "loss": 0.2438,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.8065506653019447,
1409
+ "grad_norm": 1.1714893579483032,
1410
+ "learning_rate": 1.733486566452446e-05,
1411
+ "loss": 0.2201,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.8106448311156602,
1416
+ "grad_norm": 1.3167288303375244,
1417
+ "learning_rate": 1.7304374183977032e-05,
1418
+ "loss": 0.2359,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.8147389969293757,
1423
+ "grad_norm": 1.2892719507217407,
1424
+ "learning_rate": 1.7273736415730488e-05,
1425
+ "loss": 0.2373,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.8188331627430911,
1430
+ "grad_norm": 1.2318534851074219,
1431
+ "learning_rate": 1.7242952973379983e-05,
1432
+ "loss": 0.2493,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.8229273285568065,
1437
+ "grad_norm": 1.2666089534759521,
1438
+ "learning_rate": 1.7212024473438145e-05,
1439
+ "loss": 0.2335,
1440
+ "step": 201
1441
+ },
1442
+ {
1443
+ "epoch": 0.827021494370522,
1444
+ "grad_norm": 1.3021701574325562,
1445
+ "learning_rate": 1.7180951535322742e-05,
1446
+ "loss": 0.2457,
1447
+ "step": 202
1448
+ },
1449
+ {
1450
+ "epoch": 0.8311156601842374,
1451
+ "grad_norm": 1.2390035390853882,
1452
+ "learning_rate": 1.7149734781344247e-05,
1453
+ "loss": 0.2317,
1454
+ "step": 203
1455
+ },
1456
+ {
1457
+ "epoch": 0.8352098259979529,
1458
+ "grad_norm": 1.373651146888733,
1459
+ "learning_rate": 1.7118374836693407e-05,
1460
+ "loss": 0.2477,
1461
+ "step": 204
1462
+ },
1463
+ {
1464
+ "epoch": 0.8393039918116684,
1465
+ "grad_norm": 1.4125158786773682,
1466
+ "learning_rate": 1.7086872329428702e-05,
1467
+ "loss": 0.2716,
1468
+ "step": 205
1469
+ },
1470
+ {
1471
+ "epoch": 0.8433981576253838,
1472
+ "grad_norm": 1.3470803499221802,
1473
+ "learning_rate": 1.705522789046377e-05,
1474
+ "loss": 0.264,
1475
+ "step": 206
1476
+ },
1477
+ {
1478
+ "epoch": 0.8474923234390993,
1479
+ "grad_norm": 1.419498324394226,
1480
+ "learning_rate": 1.7023442153554776e-05,
1481
+ "loss": 0.2626,
1482
+ "step": 207
1483
+ },
1484
+ {
1485
+ "epoch": 0.8515864892528148,
1486
+ "grad_norm": 1.4023360013961792,
1487
+ "learning_rate": 1.6991515755287715e-05,
1488
+ "loss": 0.2786,
1489
+ "step": 208
1490
+ },
1491
+ {
1492
+ "epoch": 0.8556806550665302,
1493
+ "grad_norm": 1.3539841175079346,
1494
+ "learning_rate": 1.695944933506567e-05,
1495
+ "loss": 0.2623,
1496
+ "step": 209
1497
+ },
1498
+ {
1499
+ "epoch": 0.8597748208802457,
1500
+ "grad_norm": 1.4278448820114136,
1501
+ "learning_rate": 1.6927243535095995e-05,
1502
+ "loss": 0.2491,
1503
+ "step": 210
1504
+ },
1505
+ {
1506
+ "epoch": 0.8638689866939611,
1507
+ "grad_norm": 1.4281779527664185,
1508
+ "learning_rate": 1.6894899000377462e-05,
1509
+ "loss": 0.2303,
1510
+ "step": 211
1511
+ },
1512
+ {
1513
+ "epoch": 0.8679631525076765,
1514
+ "grad_norm": 1.2435628175735474,
1515
+ "learning_rate": 1.686241637868734e-05,
1516
+ "loss": 0.254,
1517
+ "step": 212
1518
+ },
1519
+ {
1520
+ "epoch": 0.872057318321392,
1521
+ "grad_norm": 1.2799077033996582,
1522
+ "learning_rate": 1.6829796320568416e-05,
1523
+ "loss": 0.2253,
1524
+ "step": 213
1525
+ },
1526
+ {
1527
+ "epoch": 0.8761514841351075,
1528
+ "grad_norm": 1.4002091884613037,
1529
+ "learning_rate": 1.6797039479315994e-05,
1530
+ "loss": 0.2568,
1531
+ "step": 214
1532
+ },
1533
+ {
1534
+ "epoch": 0.8802456499488229,
1535
+ "grad_norm": 1.2796311378479004,
1536
+ "learning_rate": 1.6764146510964762e-05,
1537
+ "loss": 0.2488,
1538
+ "step": 215
1539
+ },
1540
+ {
1541
+ "epoch": 0.8843398157625384,
1542
+ "grad_norm": 1.28677237033844,
1543
+ "learning_rate": 1.67311180742757e-05,
1544
+ "loss": 0.2619,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.8884339815762539,
1549
+ "grad_norm": 1.5529658794403076,
1550
+ "learning_rate": 1.669795483072287e-05,
1551
+ "loss": 0.2312,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.8925281473899693,
1556
+ "grad_norm": 1.2904109954833984,
1557
+ "learning_rate": 1.6664657444480145e-05,
1558
+ "loss": 0.2366,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.8966223132036848,
1563
+ "grad_norm": 1.2689939737319946,
1564
+ "learning_rate": 1.6631226582407954e-05,
1565
+ "loss": 0.2446,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.9007164790174002,
1570
+ "grad_norm": 1.2608931064605713,
1571
+ "learning_rate": 1.6597662914039885e-05,
1572
+ "loss": 0.2419,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.9048106448311156,
1577
+ "grad_norm": 1.2563594579696655,
1578
+ "learning_rate": 1.65639671115693e-05,
1579
+ "loss": 0.2363,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.9089048106448311,
1584
+ "grad_norm": 1.320057988166809,
1585
+ "learning_rate": 1.653013984983585e-05,
1586
+ "loss": 0.2508,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.9129989764585466,
1591
+ "grad_norm": 1.2236367464065552,
1592
+ "learning_rate": 1.6496181806312005e-05,
1593
+ "loss": 0.2263,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.917093142272262,
1598
+ "grad_norm": 1.293455958366394,
1599
+ "learning_rate": 1.6462093661089432e-05,
1600
+ "loss": 0.2504,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.9211873080859775,
1605
+ "grad_norm": 1.3519924879074097,
1606
+ "learning_rate": 1.6427876096865394e-05,
1607
+ "loss": 0.2458,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.925281473899693,
1612
+ "grad_norm": 1.1655514240264893,
1613
+ "learning_rate": 1.6393529798929103e-05,
1614
+ "loss": 0.249,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.9293756397134084,
1619
+ "grad_norm": 1.3402174711227417,
1620
+ "learning_rate": 1.635905545514795e-05,
1621
+ "loss": 0.2426,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.9334698055271239,
1626
+ "grad_norm": 1.3474458456039429,
1627
+ "learning_rate": 1.6324453755953772e-05,
1628
+ "loss": 0.2497,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.9375639713408394,
1633
+ "grad_norm": 1.2284787893295288,
1634
+ "learning_rate": 1.6289725394328998e-05,
1635
+ "loss": 0.2438,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.9416581371545547,
1640
+ "grad_norm": 1.2306231260299683,
1641
+ "learning_rate": 1.6254871065792776e-05,
1642
+ "loss": 0.248,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.9457523029682702,
1647
+ "grad_norm": 1.3834123611450195,
1648
+ "learning_rate": 1.621989146838704e-05,
1649
+ "loss": 0.2798,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.9498464687819856,
1654
+ "grad_norm": 1.333827257156372,
1655
+ "learning_rate": 1.618478730266255e-05,
1656
+ "loss": 0.2585,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.9539406345957011,
1661
+ "grad_norm": 1.272150993347168,
1662
+ "learning_rate": 1.6149559271664835e-05,
1663
+ "loss": 0.2512,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.9580348004094166,
1668
+ "grad_norm": 1.3800173997879028,
1669
+ "learning_rate": 1.6114208080920125e-05,
1670
+ "loss": 0.2483,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.962128966223132,
1675
+ "grad_norm": 1.2623674869537354,
1676
+ "learning_rate": 1.607873443842122e-05,
1677
+ "loss": 0.2447,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.9662231320368475,
1682
+ "grad_norm": 1.2797845602035522,
1683
+ "learning_rate": 1.6043139054613326e-05,
1684
+ "loss": 0.2258,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.970317297850563,
1689
+ "grad_norm": 1.3689030408859253,
1690
+ "learning_rate": 1.600742264237979e-05,
1691
+ "loss": 0.247,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.9744114636642784,
1696
+ "grad_norm": 1.3384076356887817,
1697
+ "learning_rate": 1.5971585917027864e-05,
1698
+ "loss": 0.2286,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.9785056294779939,
1703
+ "grad_norm": 1.210942268371582,
1704
+ "learning_rate": 1.5935629596274345e-05,
1705
+ "loss": 0.2402,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.9825997952917093,
1710
+ "grad_norm": 1.2547039985656738,
1711
+ "learning_rate": 1.5899554400231233e-05,
1712
+ "loss": 0.2386,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.9866939611054247,
1717
+ "grad_norm": 1.337138056755066,
1718
+ "learning_rate": 1.586336105139127e-05,
1719
+ "loss": 0.2686,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.9907881269191402,
1724
+ "grad_norm": 1.273237943649292,
1725
+ "learning_rate": 1.5827050274613512e-05,
1726
+ "loss": 0.2653,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.9948822927328557,
1731
+ "grad_norm": 1.3556797504425049,
1732
+ "learning_rate": 1.579062279710879e-05,
1733
+ "loss": 0.2365,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.9989764585465711,
1738
+ "grad_norm": 1.2234649658203125,
1739
+ "learning_rate": 1.5754079348425137e-05,
1740
+ "loss": 0.239,
1741
+ "step": 244
1742
+ },
1743
+ {
1744
+ "epoch": 1.0,
1745
+ "grad_norm": 1.2234649658203125,
1746
+ "learning_rate": 1.57174206604332e-05,
1747
+ "loss": 0.1857,
1748
+ "step": 245
1749
+ },
1750
+ {
1751
+ "epoch": 1.0040941658137155,
1752
+ "grad_norm": 0.9376870393753052,
1753
+ "learning_rate": 1.568064746731156e-05,
1754
+ "loss": 0.1688,
1755
+ "step": 246
1756
+ },
1757
+ {
1758
+ "epoch": 1.0040941658137155,
1759
+ "eval_loss": 0.26177823543548584,
1760
+ "eval_runtime": 5.0735,
1761
+ "eval_samples_per_second": 15.571,
1762
+ "eval_steps_per_second": 1.971,
1763
+ "step": 246
1764
+ },
1765
+ {
1766
+ "epoch": 1.008188331627431,
1767
+ "grad_norm": 0.8188478350639343,
1768
+ "learning_rate": 1.564376050553205e-05,
1769
+ "loss": 0.1587,
1770
+ "step": 247
1771
+ },
1772
+ {
1773
+ "epoch": 1.0122824974411464,
1774
+ "grad_norm": 1.0571590662002563,
1775
+ "learning_rate": 1.560676051384499e-05,
1776
+ "loss": 0.1842,
1777
+ "step": 248
1778
+ },
1779
+ {
1780
+ "epoch": 1.0163766632548619,
1781
+ "grad_norm": 0.8216506242752075,
1782
+ "learning_rate": 1.5569648233264395e-05,
1783
+ "loss": 0.1591,
1784
+ "step": 249
1785
+ },
1786
+ {
1787
+ "epoch": 1.0204708290685773,
1788
+ "grad_norm": 0.8552656769752502,
1789
+ "learning_rate": 1.553242440705314e-05,
1790
+ "loss": 0.1574,
1791
+ "step": 250
1792
+ },
1793
+ {
1794
+ "epoch": 1.0245649948822928,
1795
+ "grad_norm": 0.958118200302124,
1796
+ "learning_rate": 1.5495089780708062e-05,
1797
+ "loss": 0.1543,
1798
+ "step": 251
1799
+ },
1800
+ {
1801
+ "epoch": 1.0286591606960083,
1802
+ "grad_norm": 0.8587727546691895,
1803
+ "learning_rate": 1.5457645101945046e-05,
1804
+ "loss": 0.1647,
1805
+ "step": 252
1806
+ },
1807
+ {
1808
+ "epoch": 1.0327533265097237,
1809
+ "grad_norm": 0.9147894978523254,
1810
+ "learning_rate": 1.5420091120684042e-05,
1811
+ "loss": 0.1594,
1812
+ "step": 253
1813
+ },
1814
+ {
1815
+ "epoch": 1.0368474923234392,
1816
+ "grad_norm": 0.9051440358161926,
1817
+ "learning_rate": 1.538242858903404e-05,
1818
+ "loss": 0.1598,
1819
+ "step": 254
1820
+ },
1821
+ {
1822
+ "epoch": 1.0409416581371547,
1823
+ "grad_norm": 0.9272040128707886,
1824
+ "learning_rate": 1.5344658261278013e-05,
1825
+ "loss": 0.1435,
1826
+ "step": 255
1827
+ },
1828
+ {
1829
+ "epoch": 1.04503582395087,
1830
+ "grad_norm": 0.9846145510673523,
1831
+ "learning_rate": 1.530678089385782e-05,
1832
+ "loss": 0.1566,
1833
+ "step": 256
1834
+ },
1835
+ {
1836
+ "epoch": 1.0491299897645854,
1837
+ "grad_norm": 1.080641269683838,
1838
+ "learning_rate": 1.5268797245359035e-05,
1839
+ "loss": 0.1659,
1840
+ "step": 257
1841
+ },
1842
+ {
1843
+ "epoch": 1.0532241555783008,
1844
+ "grad_norm": 1.1138889789581299,
1845
+ "learning_rate": 1.5230708076495777e-05,
1846
+ "loss": 0.1633,
1847
+ "step": 258
1848
+ },
1849
+ {
1850
+ "epoch": 1.0573183213920163,
1851
+ "grad_norm": 1.0673142671585083,
1852
+ "learning_rate": 1.519251415009546e-05,
1853
+ "loss": 0.1719,
1854
+ "step": 259
1855
+ },
1856
+ {
1857
+ "epoch": 1.0614124872057318,
1858
+ "grad_norm": 0.9915375113487244,
1859
+ "learning_rate": 1.5154216231083522e-05,
1860
+ "loss": 0.1391,
1861
+ "step": 260
1862
+ },
1863
+ {
1864
+ "epoch": 1.0655066530194472,
1865
+ "grad_norm": 1.13100004196167,
1866
+ "learning_rate": 1.5115815086468103e-05,
1867
+ "loss": 0.1795,
1868
+ "step": 261
1869
+ },
1870
+ {
1871
+ "epoch": 1.0696008188331627,
1872
+ "grad_norm": 1.2729498147964478,
1873
+ "learning_rate": 1.507731148532468e-05,
1874
+ "loss": 0.1563,
1875
+ "step": 262
1876
+ },
1877
+ {
1878
+ "epoch": 1.0736949846468782,
1879
+ "grad_norm": 1.0953161716461182,
1880
+ "learning_rate": 1.5038706198780673e-05,
1881
+ "loss": 0.1698,
1882
+ "step": 263
1883
+ },
1884
+ {
1885
+ "epoch": 1.0777891504605936,
1886
+ "grad_norm": 1.047824501991272,
1887
+ "learning_rate": 1.5000000000000002e-05,
1888
+ "loss": 0.1746,
1889
+ "step": 264
1890
+ },
1891
+ {
1892
+ "epoch": 1.0818833162743091,
1893
+ "grad_norm": 1.0675163269042969,
1894
+ "learning_rate": 1.496119366416759e-05,
1895
+ "loss": 0.1683,
1896
+ "step": 265
1897
+ },
1898
+ {
1899
+ "epoch": 1.0859774820880246,
1900
+ "grad_norm": 0.9779859185218811,
1901
+ "learning_rate": 1.492228796847385e-05,
1902
+ "loss": 0.1768,
1903
+ "step": 266
1904
+ },
1905
+ {
1906
+ "epoch": 1.09007164790174,
1907
+ "grad_norm": 1.0177017450332642,
1908
+ "learning_rate": 1.4883283692099114e-05,
1909
+ "loss": 0.1609,
1910
+ "step": 267
1911
+ },
1912
+ {
1913
+ "epoch": 1.0941658137154555,
1914
+ "grad_norm": 1.0419244766235352,
1915
+ "learning_rate": 1.4844181616198028e-05,
1916
+ "loss": 0.1555,
1917
+ "step": 268
1918
+ },
1919
+ {
1920
+ "epoch": 1.098259979529171,
1921
+ "grad_norm": 1.1818829774856567,
1922
+ "learning_rate": 1.4804982523883915e-05,
1923
+ "loss": 0.1582,
1924
+ "step": 269
1925
+ },
1926
+ {
1927
+ "epoch": 1.1023541453428864,
1928
+ "grad_norm": 0.8959009051322937,
1929
+ "learning_rate": 1.4765687200213079e-05,
1930
+ "loss": 0.1408,
1931
+ "step": 270
1932
+ },
1933
+ {
1934
+ "epoch": 1.106448311156602,
1935
+ "grad_norm": 1.008933424949646,
1936
+ "learning_rate": 1.4726296432169095e-05,
1937
+ "loss": 0.1518,
1938
+ "step": 271
1939
+ },
1940
+ {
1941
+ "epoch": 1.1105424769703174,
1942
+ "grad_norm": 0.9755818843841553,
1943
+ "learning_rate": 1.4686811008647037e-05,
1944
+ "loss": 0.1513,
1945
+ "step": 272
1946
+ },
1947
+ {
1948
+ "epoch": 1.1146366427840328,
1949
+ "grad_norm": 1.0435041189193726,
1950
+ "learning_rate": 1.4647231720437687e-05,
1951
+ "loss": 0.1673,
1952
+ "step": 273
1953
+ },
1954
+ {
1955
+ "epoch": 1.118730808597748,
1956
+ "grad_norm": 0.9561364054679871,
1957
+ "learning_rate": 1.4607559360211688e-05,
1958
+ "loss": 0.1575,
1959
+ "step": 274
1960
+ },
1961
+ {
1962
+ "epoch": 1.1228249744114636,
1963
+ "grad_norm": 1.0000271797180176,
1964
+ "learning_rate": 1.456779472250368e-05,
1965
+ "loss": 0.1677,
1966
+ "step": 275
1967
+ },
1968
+ {
1969
+ "epoch": 1.126919140225179,
1970
+ "grad_norm": 1.1137831211090088,
1971
+ "learning_rate": 1.4527938603696376e-05,
1972
+ "loss": 0.1601,
1973
+ "step": 276
1974
+ },
1975
+ {
1976
+ "epoch": 1.1310133060388945,
1977
+ "grad_norm": 0.9575244188308716,
1978
+ "learning_rate": 1.4487991802004625e-05,
1979
+ "loss": 0.1591,
1980
+ "step": 277
1981
+ },
1982
+ {
1983
+ "epoch": 1.13510747185261,
1984
+ "grad_norm": 0.9593146443367004,
1985
+ "learning_rate": 1.4447955117459414e-05,
1986
+ "loss": 0.174,
1987
+ "step": 278
1988
+ },
1989
+ {
1990
+ "epoch": 1.1392016376663254,
1991
+ "grad_norm": 1.0342645645141602,
1992
+ "learning_rate": 1.4407829351891858e-05,
1993
+ "loss": 0.1808,
1994
+ "step": 279
1995
+ },
1996
+ {
1997
+ "epoch": 1.143295803480041,
1998
+ "grad_norm": 0.908888578414917,
1999
+ "learning_rate": 1.436761530891713e-05,
2000
+ "loss": 0.1587,
2001
+ "step": 280
2002
+ },
2003
+ {
2004
+ "epoch": 1.1473899692937564,
2005
+ "grad_norm": 0.8734580874443054,
2006
+ "learning_rate": 1.4327313793918362e-05,
2007
+ "loss": 0.1364,
2008
+ "step": 281
2009
+ },
2010
+ {
2011
+ "epoch": 1.1514841351074718,
2012
+ "grad_norm": 1.0717835426330566,
2013
+ "learning_rate": 1.4286925614030542e-05,
2014
+ "loss": 0.1673,
2015
+ "step": 282
2016
+ },
2017
+ {
2018
+ "epoch": 1.1555783009211873,
2019
+ "grad_norm": 1.099330186843872,
2020
+ "learning_rate": 1.4246451578124321e-05,
2021
+ "loss": 0.1783,
2022
+ "step": 283
2023
+ },
2024
+ {
2025
+ "epoch": 1.1596724667349028,
2026
+ "grad_norm": 1.0060065984725952,
2027
+ "learning_rate": 1.4205892496789816e-05,
2028
+ "loss": 0.1613,
2029
+ "step": 284
2030
+ },
2031
+ {
2032
+ "epoch": 1.1637666325486182,
2033
+ "grad_norm": 1.0185686349868774,
2034
+ "learning_rate": 1.4165249182320401e-05,
2035
+ "loss": 0.153,
2036
+ "step": 285
2037
+ },
2038
+ {
2039
+ "epoch": 1.1678607983623337,
2040
+ "grad_norm": 1.0007094144821167,
2041
+ "learning_rate": 1.4124522448696407e-05,
2042
+ "loss": 0.1681,
2043
+ "step": 286
2044
+ },
2045
+ {
2046
+ "epoch": 1.1719549641760492,
2047
+ "grad_norm": 0.886319637298584,
2048
+ "learning_rate": 1.4083713111568841e-05,
2049
+ "loss": 0.1712,
2050
+ "step": 287
2051
+ },
2052
+ {
2053
+ "epoch": 1.1760491299897646,
2054
+ "grad_norm": 0.8676832914352417,
2055
+ "learning_rate": 1.404282198824305e-05,
2056
+ "loss": 0.1458,
2057
+ "step": 288
2058
+ },
2059
+ {
2060
+ "epoch": 1.18014329580348,
2061
+ "grad_norm": 0.9190279841423035,
2062
+ "learning_rate": 1.4001849897662337e-05,
2063
+ "loss": 0.1468,
2064
+ "step": 289
2065
+ },
2066
+ {
2067
+ "epoch": 1.1842374616171956,
2068
+ "grad_norm": 0.931041419506073,
2069
+ "learning_rate": 1.396079766039157e-05,
2070
+ "loss": 0.16,
2071
+ "step": 290
2072
+ },
2073
+ {
2074
+ "epoch": 1.188331627430911,
2075
+ "grad_norm": 0.9734114408493042,
2076
+ "learning_rate": 1.3919666098600753e-05,
2077
+ "loss": 0.1545,
2078
+ "step": 291
2079
+ },
2080
+ {
2081
+ "epoch": 1.1924257932446265,
2082
+ "grad_norm": 0.933809757232666,
2083
+ "learning_rate": 1.387845603604855e-05,
2084
+ "loss": 0.156,
2085
+ "step": 292
2086
+ },
2087
+ {
2088
+ "epoch": 1.196519959058342,
2089
+ "grad_norm": 0.9046220779418945,
2090
+ "learning_rate": 1.3837168298065798e-05,
2091
+ "loss": 0.1378,
2092
+ "step": 293
2093
+ },
2094
+ {
2095
+ "epoch": 1.2006141248720574,
2096
+ "grad_norm": 0.9085408449172974,
2097
+ "learning_rate": 1.3795803711538966e-05,
2098
+ "loss": 0.1616,
2099
+ "step": 294
2100
+ },
2101
+ {
2102
+ "epoch": 1.204708290685773,
2103
+ "grad_norm": 0.9923974275588989,
2104
+ "learning_rate": 1.37543631048936e-05,
2105
+ "loss": 0.1797,
2106
+ "step": 295
2107
+ },
2108
+ {
2109
+ "epoch": 1.2088024564994881,
2110
+ "grad_norm": 0.9671124219894409,
2111
+ "learning_rate": 1.3712847308077737e-05,
2112
+ "loss": 0.1558,
2113
+ "step": 296
2114
+ },
2115
+ {
2116
+ "epoch": 1.2128966223132036,
2117
+ "grad_norm": 1.1265525817871094,
2118
+ "learning_rate": 1.3671257152545277e-05,
2119
+ "loss": 0.1582,
2120
+ "step": 297
2121
+ },
2122
+ {
2123
+ "epoch": 1.216990788126919,
2124
+ "grad_norm": 1.066918969154358,
2125
+ "learning_rate": 1.3629593471239328e-05,
2126
+ "loss": 0.1552,
2127
+ "step": 298
2128
+ },
2129
+ {
2130
+ "epoch": 1.2210849539406345,
2131
+ "grad_norm": 0.9553365111351013,
2132
+ "learning_rate": 1.3587857098575534e-05,
2133
+ "loss": 0.1614,
2134
+ "step": 299
2135
+ },
2136
+ {
2137
+ "epoch": 1.22517911975435,
2138
+ "grad_norm": 1.0191755294799805,
2139
+ "learning_rate": 1.3546048870425356e-05,
2140
+ "loss": 0.1661,
2141
+ "step": 300
2142
+ },
2143
+ {
2144
+ "epoch": 1.2292732855680655,
2145
+ "grad_norm": 0.8861321806907654,
2146
+ "learning_rate": 1.350416962409934e-05,
2147
+ "loss": 0.1383,
2148
+ "step": 301
2149
+ },
2150
+ {
2151
+ "epoch": 1.233367451381781,
2152
+ "grad_norm": 0.9416659474372864,
2153
+ "learning_rate": 1.346222019833033e-05,
2154
+ "loss": 0.1429,
2155
+ "step": 302
2156
+ },
2157
+ {
2158
+ "epoch": 1.2374616171954964,
2159
+ "grad_norm": 1.0216457843780518,
2160
+ "learning_rate": 1.342020143325669e-05,
2161
+ "loss": 0.1503,
2162
+ "step": 303
2163
+ },
2164
+ {
2165
+ "epoch": 1.2415557830092119,
2166
+ "grad_norm": 1.08574378490448,
2167
+ "learning_rate": 1.3378114170405473e-05,
2168
+ "loss": 0.1685,
2169
+ "step": 304
2170
+ },
2171
+ {
2172
+ "epoch": 1.2456499488229273,
2173
+ "grad_norm": 0.926025390625,
2174
+ "learning_rate": 1.3335959252675566e-05,
2175
+ "loss": 0.159,
2176
+ "step": 305
2177
+ },
2178
+ {
2179
+ "epoch": 1.2497441146366428,
2180
+ "grad_norm": 1.0333497524261475,
2181
+ "learning_rate": 1.3293737524320798e-05,
2182
+ "loss": 0.142,
2183
+ "step": 306
2184
+ },
2185
+ {
2186
+ "epoch": 1.2538382804503583,
2187
+ "grad_norm": 0.9234523773193359,
2188
+ "learning_rate": 1.3251449830933052e-05,
2189
+ "loss": 0.1512,
2190
+ "step": 307
2191
+ },
2192
+ {
2193
+ "epoch": 1.2579324462640737,
2194
+ "grad_norm": 0.9113657474517822,
2195
+ "learning_rate": 1.3209097019425317e-05,
2196
+ "loss": 0.162,
2197
+ "step": 308
2198
+ },
2199
+ {
2200
+ "epoch": 1.2620266120777892,
2201
+ "grad_norm": 0.9163710474967957,
2202
+ "learning_rate": 1.3166679938014728e-05,
2203
+ "loss": 0.1676,
2204
+ "step": 309
2205
+ },
2206
+ {
2207
+ "epoch": 1.2661207778915047,
2208
+ "grad_norm": 0.8762107491493225,
2209
+ "learning_rate": 1.3124199436205575e-05,
2210
+ "loss": 0.1564,
2211
+ "step": 310
2212
+ },
2213
+ {
2214
+ "epoch": 1.27021494370522,
2215
+ "grad_norm": 0.9909912943840027,
2216
+ "learning_rate": 1.3081656364772308e-05,
2217
+ "loss": 0.162,
2218
+ "step": 311
2219
+ },
2220
+ {
2221
+ "epoch": 1.2743091095189354,
2222
+ "grad_norm": 1.0118768215179443,
2223
+ "learning_rate": 1.303905157574247e-05,
2224
+ "loss": 0.1573,
2225
+ "step": 312
2226
+ },
2227
+ {
2228
+ "epoch": 1.2784032753326509,
2229
+ "grad_norm": 0.9785376191139221,
2230
+ "learning_rate": 1.2996385922379657e-05,
2231
+ "loss": 0.1695,
2232
+ "step": 313
2233
+ },
2234
+ {
2235
+ "epoch": 1.2824974411463663,
2236
+ "grad_norm": 1.0604181289672852,
2237
+ "learning_rate": 1.2953660259166413e-05,
2238
+ "loss": 0.1817,
2239
+ "step": 314
2240
+ },
2241
+ {
2242
+ "epoch": 1.2865916069600818,
2243
+ "grad_norm": 0.909048318862915,
2244
+ "learning_rate": 1.291087544178713e-05,
2245
+ "loss": 0.1599,
2246
+ "step": 315
2247
+ },
2248
+ {
2249
+ "epoch": 1.2906857727737973,
2250
+ "grad_norm": 0.988167405128479,
2251
+ "learning_rate": 1.2868032327110904e-05,
2252
+ "loss": 0.1586,
2253
+ "step": 316
2254
+ },
2255
+ {
2256
+ "epoch": 1.2947799385875127,
2257
+ "grad_norm": 1.0076347589492798,
2258
+ "learning_rate": 1.2825131773174371e-05,
2259
+ "loss": 0.1791,
2260
+ "step": 317
2261
+ },
2262
+ {
2263
+ "epoch": 1.2988741044012282,
2264
+ "grad_norm": 1.09652841091156,
2265
+ "learning_rate": 1.2782174639164528e-05,
2266
+ "loss": 0.1585,
2267
+ "step": 318
2268
+ },
2269
+ {
2270
+ "epoch": 1.3029682702149437,
2271
+ "grad_norm": 1.0916470289230347,
2272
+ "learning_rate": 1.2739161785401525e-05,
2273
+ "loss": 0.1782,
2274
+ "step": 319
2275
+ },
2276
+ {
2277
+ "epoch": 1.3070624360286591,
2278
+ "grad_norm": 1.0601223707199097,
2279
+ "learning_rate": 1.269609407332144e-05,
2280
+ "loss": 0.1654,
2281
+ "step": 320
2282
+ },
2283
+ {
2284
+ "epoch": 1.3111566018423746,
2285
+ "grad_norm": 1.1371649503707886,
2286
+ "learning_rate": 1.2652972365459008e-05,
2287
+ "loss": 0.1763,
2288
+ "step": 321
2289
+ },
2290
+ {
2291
+ "epoch": 1.31525076765609,
2292
+ "grad_norm": 1.0163546800613403,
2293
+ "learning_rate": 1.2609797525430374e-05,
2294
+ "loss": 0.17,
2295
+ "step": 322
2296
+ },
2297
+ {
2298
+ "epoch": 1.3193449334698055,
2299
+ "grad_norm": 0.9880717396736145,
2300
+ "learning_rate": 1.2566570417915769e-05,
2301
+ "loss": 0.1691,
2302
+ "step": 323
2303
+ },
2304
+ {
2305
+ "epoch": 1.323439099283521,
2306
+ "grad_norm": 0.8969373106956482,
2307
+ "learning_rate": 1.2523291908642219e-05,
2308
+ "loss": 0.1625,
2309
+ "step": 324
2310
+ },
2311
+ {
2312
+ "epoch": 1.3275332650972365,
2313
+ "grad_norm": 1.0454288721084595,
2314
+ "learning_rate": 1.2479962864366186e-05,
2315
+ "loss": 0.1669,
2316
+ "step": 325
2317
+ },
2318
+ {
2319
+ "epoch": 1.331627430910952,
2320
+ "grad_norm": 1.0298652648925781,
2321
+ "learning_rate": 1.243658415285622e-05,
2322
+ "loss": 0.1822,
2323
+ "step": 326
2324
+ },
2325
+ {
2326
+ "epoch": 1.3357215967246674,
2327
+ "grad_norm": 0.9368167519569397,
2328
+ "learning_rate": 1.2393156642875579e-05,
2329
+ "loss": 0.1614,
2330
+ "step": 327
2331
+ },
2332
+ {
2333
+ "epoch": 1.3398157625383829,
2334
+ "grad_norm": 0.9903757572174072,
2335
+ "learning_rate": 1.2349681204164823e-05,
2336
+ "loss": 0.1467,
2337
+ "step": 328
2338
+ },
2339
+ {
2340
+ "epoch": 1.3398157625383829,
2341
+ "eval_loss": 0.26726678013801575,
2342
+ "eval_runtime": 5.839,
2343
+ "eval_samples_per_second": 13.53,
2344
+ "eval_steps_per_second": 1.713,
2345
+ "step": 328
2346
+ },
2347
+ {
2348
+ "epoch": 1.3439099283520983,
2349
+ "grad_norm": 0.9085035920143127,
2350
+ "learning_rate": 1.2306158707424402e-05,
2351
+ "loss": 0.1486,
2352
+ "step": 329
2353
+ },
2354
+ {
2355
+ "epoch": 1.3480040941658138,
2356
+ "grad_norm": 0.9950000643730164,
2357
+ "learning_rate": 1.2262590024297226e-05,
2358
+ "loss": 0.1586,
2359
+ "step": 330
2360
+ },
2361
+ {
2362
+ "epoch": 1.3520982599795293,
2363
+ "grad_norm": 0.963299572467804,
2364
+ "learning_rate": 1.2218976027351177e-05,
2365
+ "loss": 0.1508,
2366
+ "step": 331
2367
+ },
2368
+ {
2369
+ "epoch": 1.3561924257932447,
2370
+ "grad_norm": 0.9706941246986389,
2371
+ "learning_rate": 1.2175317590061676e-05,
2372
+ "loss": 0.1576,
2373
+ "step": 332
2374
+ },
2375
+ {
2376
+ "epoch": 1.3602865916069602,
2377
+ "grad_norm": 1.1053946018218994,
2378
+ "learning_rate": 1.2131615586794162e-05,
2379
+ "loss": 0.1632,
2380
+ "step": 333
2381
+ },
2382
+ {
2383
+ "epoch": 1.3643807574206757,
2384
+ "grad_norm": 0.9622719287872314,
2385
+ "learning_rate": 1.2087870892786588e-05,
2386
+ "loss": 0.1629,
2387
+ "step": 334
2388
+ },
2389
+ {
2390
+ "epoch": 1.3684749232343911,
2391
+ "grad_norm": 0.9611127972602844,
2392
+ "learning_rate": 1.2044084384131891e-05,
2393
+ "loss": 0.1517,
2394
+ "step": 335
2395
+ },
2396
+ {
2397
+ "epoch": 1.3725690890481064,
2398
+ "grad_norm": 0.9548255801200867,
2399
+ "learning_rate": 1.2000256937760446e-05,
2400
+ "loss": 0.1527,
2401
+ "step": 336
2402
+ },
2403
+ {
2404
+ "epoch": 1.3766632548618218,
2405
+ "grad_norm": 0.9860974550247192,
2406
+ "learning_rate": 1.1956389431422508e-05,
2407
+ "loss": 0.1729,
2408
+ "step": 337
2409
+ },
2410
+ {
2411
+ "epoch": 1.3807574206755373,
2412
+ "grad_norm": 1.0746179819107056,
2413
+ "learning_rate": 1.1912482743670624e-05,
2414
+ "loss": 0.1713,
2415
+ "step": 338
2416
+ },
2417
+ {
2418
+ "epoch": 1.3848515864892528,
2419
+ "grad_norm": 0.8706703782081604,
2420
+ "learning_rate": 1.1868537753842052e-05,
2421
+ "loss": 0.1521,
2422
+ "step": 339
2423
+ },
2424
+ {
2425
+ "epoch": 1.3889457523029682,
2426
+ "grad_norm": 0.9581889510154724,
2427
+ "learning_rate": 1.1824555342041129e-05,
2428
+ "loss": 0.1401,
2429
+ "step": 340
2430
+ },
2431
+ {
2432
+ "epoch": 1.3930399181166837,
2433
+ "grad_norm": 0.9390183091163635,
2434
+ "learning_rate": 1.1780536389121668e-05,
2435
+ "loss": 0.1391,
2436
+ "step": 341
2437
+ },
2438
+ {
2439
+ "epoch": 1.3971340839303992,
2440
+ "grad_norm": 0.9149916768074036,
2441
+ "learning_rate": 1.1736481776669307e-05,
2442
+ "loss": 0.1492,
2443
+ "step": 342
2444
+ },
2445
+ {
2446
+ "epoch": 1.4012282497441146,
2447
+ "grad_norm": 0.9424813389778137,
2448
+ "learning_rate": 1.1692392386983837e-05,
2449
+ "loss": 0.1716,
2450
+ "step": 343
2451
+ },
2452
+ {
2453
+ "epoch": 1.40532241555783,
2454
+ "grad_norm": 0.9241910576820374,
2455
+ "learning_rate": 1.1648269103061567e-05,
2456
+ "loss": 0.166,
2457
+ "step": 344
2458
+ },
2459
+ {
2460
+ "epoch": 1.4094165813715456,
2461
+ "grad_norm": 1.0855869054794312,
2462
+ "learning_rate": 1.1604112808577603e-05,
2463
+ "loss": 0.1653,
2464
+ "step": 345
2465
+ },
2466
+ {
2467
+ "epoch": 1.413510747185261,
2468
+ "grad_norm": 0.9882118105888367,
2469
+ "learning_rate": 1.155992438786818e-05,
2470
+ "loss": 0.1578,
2471
+ "step": 346
2472
+ },
2473
+ {
2474
+ "epoch": 1.4176049129989765,
2475
+ "grad_norm": 0.9933427572250366,
2476
+ "learning_rate": 1.1515704725912926e-05,
2477
+ "loss": 0.1506,
2478
+ "step": 347
2479
+ },
2480
+ {
2481
+ "epoch": 1.421699078812692,
2482
+ "grad_norm": 0.9362509250640869,
2483
+ "learning_rate": 1.1471454708317163e-05,
2484
+ "loss": 0.1704,
2485
+ "step": 348
2486
+ },
2487
+ {
2488
+ "epoch": 1.4257932446264074,
2489
+ "grad_norm": 0.9945564866065979,
2490
+ "learning_rate": 1.1427175221294145e-05,
2491
+ "loss": 0.1619,
2492
+ "step": 349
2493
+ },
2494
+ {
2495
+ "epoch": 1.429887410440123,
2496
+ "grad_norm": 1.0308408737182617,
2497
+ "learning_rate": 1.1382867151647333e-05,
2498
+ "loss": 0.1485,
2499
+ "step": 350
2500
+ },
2501
+ {
2502
+ "epoch": 1.4339815762538382,
2503
+ "grad_norm": 0.9077311158180237,
2504
+ "learning_rate": 1.1338531386752618e-05,
2505
+ "loss": 0.1472,
2506
+ "step": 351
2507
+ },
2508
+ {
2509
+ "epoch": 1.4380757420675536,
2510
+ "grad_norm": 1.0163536071777344,
2511
+ "learning_rate": 1.1294168814540554e-05,
2512
+ "loss": 0.169,
2513
+ "step": 352
2514
+ },
2515
+ {
2516
+ "epoch": 1.442169907881269,
2517
+ "grad_norm": 1.095957636833191,
2518
+ "learning_rate": 1.1249780323478585e-05,
2519
+ "loss": 0.1687,
2520
+ "step": 353
2521
+ },
2522
+ {
2523
+ "epoch": 1.4462640736949846,
2524
+ "grad_norm": 1.0116571187973022,
2525
+ "learning_rate": 1.1205366802553231e-05,
2526
+ "loss": 0.1687,
2527
+ "step": 354
2528
+ },
2529
+ {
2530
+ "epoch": 1.4503582395087,
2531
+ "grad_norm": 0.893722653388977,
2532
+ "learning_rate": 1.1160929141252303e-05,
2533
+ "loss": 0.1483,
2534
+ "step": 355
2535
+ },
2536
+ {
2537
+ "epoch": 1.4544524053224155,
2538
+ "grad_norm": 1.1401066780090332,
2539
+ "learning_rate": 1.1116468229547079e-05,
2540
+ "loss": 0.171,
2541
+ "step": 356
2542
+ },
2543
+ {
2544
+ "epoch": 1.458546571136131,
2545
+ "grad_norm": 0.9569492340087891,
2546
+ "learning_rate": 1.107198495787448e-05,
2547
+ "loss": 0.1573,
2548
+ "step": 357
2549
+ },
2550
+ {
2551
+ "epoch": 1.4626407369498464,
2552
+ "grad_norm": 0.9641392230987549,
2553
+ "learning_rate": 1.1027480217119245e-05,
2554
+ "loss": 0.1518,
2555
+ "step": 358
2556
+ },
2557
+ {
2558
+ "epoch": 1.4667349027635619,
2559
+ "grad_norm": 0.986418604850769,
2560
+ "learning_rate": 1.0982954898596072e-05,
2561
+ "loss": 0.1637,
2562
+ "step": 359
2563
+ },
2564
+ {
2565
+ "epoch": 1.4708290685772774,
2566
+ "grad_norm": 0.9645577073097229,
2567
+ "learning_rate": 1.0938409894031793e-05,
2568
+ "loss": 0.1398,
2569
+ "step": 360
2570
+ },
2571
+ {
2572
+ "epoch": 1.4749232343909928,
2573
+ "grad_norm": 1.0230332612991333,
2574
+ "learning_rate": 1.0893846095547493e-05,
2575
+ "loss": 0.1491,
2576
+ "step": 361
2577
+ },
2578
+ {
2579
+ "epoch": 1.4790174002047083,
2580
+ "grad_norm": 0.9442994594573975,
2581
+ "learning_rate": 1.084926439564065e-05,
2582
+ "loss": 0.1593,
2583
+ "step": 362
2584
+ },
2585
+ {
2586
+ "epoch": 1.4831115660184238,
2587
+ "grad_norm": 0.8560605645179749,
2588
+ "learning_rate": 1.0804665687167262e-05,
2589
+ "loss": 0.1594,
2590
+ "step": 363
2591
+ },
2592
+ {
2593
+ "epoch": 1.4872057318321392,
2594
+ "grad_norm": 1.018290400505066,
2595
+ "learning_rate": 1.0760050863323961e-05,
2596
+ "loss": 0.1604,
2597
+ "step": 364
2598
+ },
2599
+ {
2600
+ "epoch": 1.4912998976458547,
2601
+ "grad_norm": 0.8661187291145325,
2602
+ "learning_rate": 1.0715420817630137e-05,
2603
+ "loss": 0.1432,
2604
+ "step": 365
2605
+ },
2606
+ {
2607
+ "epoch": 1.4953940634595702,
2608
+ "grad_norm": 0.9243437647819519,
2609
+ "learning_rate": 1.0670776443910024e-05,
2610
+ "loss": 0.151,
2611
+ "step": 366
2612
+ },
2613
+ {
2614
+ "epoch": 1.4994882292732856,
2615
+ "grad_norm": 0.9546313285827637,
2616
+ "learning_rate": 1.062611863627482e-05,
2617
+ "loss": 0.1519,
2618
+ "step": 367
2619
+ },
2620
+ {
2621
+ "epoch": 1.503582395087001,
2622
+ "grad_norm": 0.9470425248146057,
2623
+ "learning_rate": 1.0581448289104759e-05,
2624
+ "loss": 0.1463,
2625
+ "step": 368
2626
+ },
2627
+ {
2628
+ "epoch": 1.5076765609007166,
2629
+ "grad_norm": 1.0364755392074585,
2630
+ "learning_rate": 1.0536766297031216e-05,
2631
+ "loss": 0.1695,
2632
+ "step": 369
2633
+ },
2634
+ {
2635
+ "epoch": 1.511770726714432,
2636
+ "grad_norm": 0.9163882732391357,
2637
+ "learning_rate": 1.0492073554918782e-05,
2638
+ "loss": 0.1549,
2639
+ "step": 370
2640
+ },
2641
+ {
2642
+ "epoch": 1.5158648925281475,
2643
+ "grad_norm": 1.1011639833450317,
2644
+ "learning_rate": 1.0447370957847343e-05,
2645
+ "loss": 0.154,
2646
+ "step": 371
2647
+ },
2648
+ {
2649
+ "epoch": 1.519959058341863,
2650
+ "grad_norm": 0.8807597160339355,
2651
+ "learning_rate": 1.0402659401094154e-05,
2652
+ "loss": 0.1364,
2653
+ "step": 372
2654
+ },
2655
+ {
2656
+ "epoch": 1.5240532241555784,
2657
+ "grad_norm": 0.9387779831886292,
2658
+ "learning_rate": 1.0357939780115906e-05,
2659
+ "loss": 0.1593,
2660
+ "step": 373
2661
+ },
2662
+ {
2663
+ "epoch": 1.528147389969294,
2664
+ "grad_norm": 1.1142334938049316,
2665
+ "learning_rate": 1.0313212990530804e-05,
2666
+ "loss": 0.1547,
2667
+ "step": 374
2668
+ },
2669
+ {
2670
+ "epoch": 1.5322415557830094,
2671
+ "grad_norm": 1.0406149625778198,
2672
+ "learning_rate": 1.0268479928100615e-05,
2673
+ "loss": 0.1639,
2674
+ "step": 375
2675
+ },
2676
+ {
2677
+ "epoch": 1.5363357215967248,
2678
+ "grad_norm": 0.8890196084976196,
2679
+ "learning_rate": 1.0223741488712732e-05,
2680
+ "loss": 0.1357,
2681
+ "step": 376
2682
+ },
2683
+ {
2684
+ "epoch": 1.54042988741044,
2685
+ "grad_norm": 0.8725599050521851,
2686
+ "learning_rate": 1.0178998568362243e-05,
2687
+ "loss": 0.1334,
2688
+ "step": 377
2689
+ },
2690
+ {
2691
+ "epoch": 1.5445240532241555,
2692
+ "grad_norm": 1.0039124488830566,
2693
+ "learning_rate": 1.0134252063133976e-05,
2694
+ "loss": 0.1544,
2695
+ "step": 378
2696
+ },
2697
+ {
2698
+ "epoch": 1.548618219037871,
2699
+ "grad_norm": 0.9957043528556824,
2700
+ "learning_rate": 1.0089502869184549e-05,
2701
+ "loss": 0.1578,
2702
+ "step": 379
2703
+ },
2704
+ {
2705
+ "epoch": 1.5527123848515865,
2706
+ "grad_norm": 0.8412466049194336,
2707
+ "learning_rate": 1.0044751882724436e-05,
2708
+ "loss": 0.1328,
2709
+ "step": 380
2710
+ },
2711
+ {
2712
+ "epoch": 1.556806550665302,
2713
+ "grad_norm": 0.9724802374839783,
2714
+ "learning_rate": 1e-05,
2715
+ "loss": 0.1494,
2716
+ "step": 381
2717
+ },
2718
+ {
2719
+ "epoch": 1.5609007164790174,
2720
+ "grad_norm": 0.8915446996688843,
2721
+ "learning_rate": 9.955248117275566e-06,
2722
+ "loss": 0.1528,
2723
+ "step": 382
2724
+ },
2725
+ {
2726
+ "epoch": 1.5649948822927329,
2727
+ "grad_norm": 0.8682056069374084,
2728
+ "learning_rate": 9.910497130815454e-06,
2729
+ "loss": 0.1378,
2730
+ "step": 383
2731
+ },
2732
+ {
2733
+ "epoch": 1.5690890481064483,
2734
+ "grad_norm": 0.9853907227516174,
2735
+ "learning_rate": 9.865747936866027e-06,
2736
+ "loss": 0.1521,
2737
+ "step": 384
2738
+ },
2739
+ {
2740
+ "epoch": 1.5731832139201638,
2741
+ "grad_norm": 1.1003942489624023,
2742
+ "learning_rate": 9.821001431637759e-06,
2743
+ "loss": 0.1592,
2744
+ "step": 385
2745
+ },
2746
+ {
2747
+ "epoch": 1.5772773797338793,
2748
+ "grad_norm": 0.9457170367240906,
2749
+ "learning_rate": 9.776258511287271e-06,
2750
+ "loss": 0.1404,
2751
+ "step": 386
2752
+ },
2753
+ {
2754
+ "epoch": 1.5813715455475945,
2755
+ "grad_norm": 1.0267016887664795,
2756
+ "learning_rate": 9.73152007189939e-06,
2757
+ "loss": 0.1631,
2758
+ "step": 387
2759
+ },
2760
+ {
2761
+ "epoch": 1.58546571136131,
2762
+ "grad_norm": 0.899929940700531,
2763
+ "learning_rate": 9.6867870094692e-06,
2764
+ "loss": 0.1596,
2765
+ "step": 388
2766
+ },
2767
+ {
2768
+ "epoch": 1.5895598771750254,
2769
+ "grad_norm": 0.904625415802002,
2770
+ "learning_rate": 9.642060219884096e-06,
2771
+ "loss": 0.1431,
2772
+ "step": 389
2773
+ },
2774
+ {
2775
+ "epoch": 1.593654042988741,
2776
+ "grad_norm": 1.0200403928756714,
2777
+ "learning_rate": 9.597340598905851e-06,
2778
+ "loss": 0.1475,
2779
+ "step": 390
2780
+ },
2781
+ {
2782
+ "epoch": 1.5977482088024564,
2783
+ "grad_norm": 0.8861089944839478,
2784
+ "learning_rate": 9.55262904215266e-06,
2785
+ "loss": 0.1495,
2786
+ "step": 391
2787
+ },
2788
+ {
2789
+ "epoch": 1.6018423746161718,
2790
+ "grad_norm": 0.9779448509216309,
2791
+ "learning_rate": 9.50792644508122e-06,
2792
+ "loss": 0.1514,
2793
+ "step": 392
2794
+ },
2795
+ {
2796
+ "epoch": 1.6059365404298873,
2797
+ "grad_norm": 0.8129394054412842,
2798
+ "learning_rate": 9.463233702968784e-06,
2799
+ "loss": 0.1482,
2800
+ "step": 393
2801
+ },
2802
+ {
2803
+ "epoch": 1.6100307062436028,
2804
+ "grad_norm": 0.8793542385101318,
2805
+ "learning_rate": 9.418551710895243e-06,
2806
+ "loss": 0.1505,
2807
+ "step": 394
2808
+ },
2809
+ {
2810
+ "epoch": 1.6141248720573182,
2811
+ "grad_norm": 0.9809761643409729,
2812
+ "learning_rate": 9.373881363725182e-06,
2813
+ "loss": 0.1548,
2814
+ "step": 395
2815
+ },
2816
+ {
2817
+ "epoch": 1.6182190378710337,
2818
+ "grad_norm": 0.9904576539993286,
2819
+ "learning_rate": 9.329223556089976e-06,
2820
+ "loss": 0.1579,
2821
+ "step": 396
2822
+ },
2823
+ {
2824
+ "epoch": 1.6223132036847492,
2825
+ "grad_norm": 0.8856755495071411,
2826
+ "learning_rate": 9.284579182369868e-06,
2827
+ "loss": 0.1524,
2828
+ "step": 397
2829
+ },
2830
+ {
2831
+ "epoch": 1.6264073694984647,
2832
+ "grad_norm": 1.0314946174621582,
2833
+ "learning_rate": 9.239949136676042e-06,
2834
+ "loss": 0.162,
2835
+ "step": 398
2836
+ },
2837
+ {
2838
+ "epoch": 1.6305015353121801,
2839
+ "grad_norm": 0.9784588813781738,
2840
+ "learning_rate": 9.195334312832742e-06,
2841
+ "loss": 0.1463,
2842
+ "step": 399
2843
+ },
2844
+ {
2845
+ "epoch": 1.6345957011258956,
2846
+ "grad_norm": 0.8726085424423218,
2847
+ "learning_rate": 9.15073560435935e-06,
2848
+ "loss": 0.1324,
2849
+ "step": 400
2850
+ },
2851
+ {
2852
+ "epoch": 1.638689866939611,
2853
+ "grad_norm": 0.9043903946876526,
2854
+ "learning_rate": 9.10615390445251e-06,
2855
+ "loss": 0.1482,
2856
+ "step": 401
2857
+ },
2858
+ {
2859
+ "epoch": 1.6427840327533265,
2860
+ "grad_norm": 0.9523571729660034,
2861
+ "learning_rate": 9.061590105968208e-06,
2862
+ "loss": 0.1404,
2863
+ "step": 402
2864
+ },
2865
+ {
2866
+ "epoch": 1.646878198567042,
2867
+ "grad_norm": 0.9627721905708313,
2868
+ "learning_rate": 9.01704510140393e-06,
2869
+ "loss": 0.1367,
2870
+ "step": 403
2871
+ },
2872
+ {
2873
+ "epoch": 1.6509723643807575,
2874
+ "grad_norm": 0.9449582695960999,
2875
+ "learning_rate": 8.97251978288076e-06,
2876
+ "loss": 0.1557,
2877
+ "step": 404
2878
+ },
2879
+ {
2880
+ "epoch": 1.655066530194473,
2881
+ "grad_norm": 1.0399394035339355,
2882
+ "learning_rate": 8.928015042125523e-06,
2883
+ "loss": 0.153,
2884
+ "step": 405
2885
+ },
2886
+ {
2887
+ "epoch": 1.6591606960081884,
2888
+ "grad_norm": 0.9468371868133545,
2889
+ "learning_rate": 8.883531770452924e-06,
2890
+ "loss": 0.1544,
2891
+ "step": 406
2892
+ },
2893
+ {
2894
+ "epoch": 1.6632548618219039,
2895
+ "grad_norm": 0.9178614020347595,
2896
+ "learning_rate": 8.839070858747697e-06,
2897
+ "loss": 0.1451,
2898
+ "step": 407
2899
+ },
2900
+ {
2901
+ "epoch": 1.6673490276356193,
2902
+ "grad_norm": 0.8932563662528992,
2903
+ "learning_rate": 8.79463319744677e-06,
2904
+ "loss": 0.1495,
2905
+ "step": 408
2906
+ },
2907
+ {
2908
+ "epoch": 1.6714431934493348,
2909
+ "grad_norm": 0.9476360082626343,
2910
+ "learning_rate": 8.750219676521417e-06,
2911
+ "loss": 0.1402,
2912
+ "step": 409
2913
+ },
2914
+ {
2915
+ "epoch": 1.6755373592630503,
2916
+ "grad_norm": 1.1400271654129028,
2917
+ "learning_rate": 8.705831185459446e-06,
2918
+ "loss": 0.1605,
2919
+ "step": 410
2920
+ },
2921
+ {
2922
+ "epoch": 1.6755373592630503,
2923
+ "eval_loss": 0.2577343285083771,
2924
+ "eval_runtime": 5.9021,
2925
+ "eval_samples_per_second": 13.385,
2926
+ "eval_steps_per_second": 1.694,
2927
+ "step": 410
2928
+ },
2929
+ {
2930
+ "epoch": 1.6796315250767657,
2931
+ "grad_norm": 1.0324385166168213,
2932
+ "learning_rate": 8.661468613247387e-06,
2933
+ "loss": 0.155,
2934
+ "step": 411
2935
+ },
2936
+ {
2937
+ "epoch": 1.6837256908904812,
2938
+ "grad_norm": 0.8972249031066895,
2939
+ "learning_rate": 8.617132848352672e-06,
2940
+ "loss": 0.1493,
2941
+ "step": 412
2942
+ },
2943
+ {
2944
+ "epoch": 1.6878198567041967,
2945
+ "grad_norm": 0.9417198896408081,
2946
+ "learning_rate": 8.572824778705858e-06,
2947
+ "loss": 0.1446,
2948
+ "step": 413
2949
+ },
2950
+ {
2951
+ "epoch": 1.6919140225179121,
2952
+ "grad_norm": 0.9958034753799438,
2953
+ "learning_rate": 8.528545291682839e-06,
2954
+ "loss": 0.1725,
2955
+ "step": 414
2956
+ },
2957
+ {
2958
+ "epoch": 1.6960081883316276,
2959
+ "grad_norm": 0.7882540822029114,
2960
+ "learning_rate": 8.484295274087077e-06,
2961
+ "loss": 0.1332,
2962
+ "step": 415
2963
+ },
2964
+ {
2965
+ "epoch": 1.7001023541453428,
2966
+ "grad_norm": 0.9401816725730896,
2967
+ "learning_rate": 8.440075612131823e-06,
2968
+ "loss": 0.1482,
2969
+ "step": 416
2970
+ },
2971
+ {
2972
+ "epoch": 1.7041965199590583,
2973
+ "grad_norm": 0.8681234121322632,
2974
+ "learning_rate": 8.395887191422397e-06,
2975
+ "loss": 0.1563,
2976
+ "step": 417
2977
+ },
2978
+ {
2979
+ "epoch": 1.7082906857727738,
2980
+ "grad_norm": 0.953637957572937,
2981
+ "learning_rate": 8.351730896938438e-06,
2982
+ "loss": 0.1548,
2983
+ "step": 418
2984
+ },
2985
+ {
2986
+ "epoch": 1.7123848515864892,
2987
+ "grad_norm": 0.9913907051086426,
2988
+ "learning_rate": 8.307607613016166e-06,
2989
+ "loss": 0.151,
2990
+ "step": 419
2991
+ },
2992
+ {
2993
+ "epoch": 1.7164790174002047,
2994
+ "grad_norm": 0.9096423983573914,
2995
+ "learning_rate": 8.263518223330698e-06,
2996
+ "loss": 0.1425,
2997
+ "step": 420
2998
+ },
2999
+ {
3000
+ "epoch": 1.7205731832139202,
3001
+ "grad_norm": 0.8913793563842773,
3002
+ "learning_rate": 8.219463610878336e-06,
3003
+ "loss": 0.1445,
3004
+ "step": 421
3005
+ },
3006
+ {
3007
+ "epoch": 1.7246673490276356,
3008
+ "grad_norm": 0.8762878775596619,
3009
+ "learning_rate": 8.175444657958875e-06,
3010
+ "loss": 0.1328,
3011
+ "step": 422
3012
+ },
3013
+ {
3014
+ "epoch": 1.728761514841351,
3015
+ "grad_norm": 0.906721830368042,
3016
+ "learning_rate": 8.131462246157953e-06,
3017
+ "loss": 0.1432,
3018
+ "step": 423
3019
+ },
3020
+ {
3021
+ "epoch": 1.7328556806550666,
3022
+ "grad_norm": 0.9558602571487427,
3023
+ "learning_rate": 8.087517256329376e-06,
3024
+ "loss": 0.1556,
3025
+ "step": 424
3026
+ },
3027
+ {
3028
+ "epoch": 1.736949846468782,
3029
+ "grad_norm": 1.0226850509643555,
3030
+ "learning_rate": 8.043610568577497e-06,
3031
+ "loss": 0.1526,
3032
+ "step": 425
3033
+ },
3034
+ {
3035
+ "epoch": 1.7410440122824973,
3036
+ "grad_norm": 0.8428735136985779,
3037
+ "learning_rate": 7.999743062239557e-06,
3038
+ "loss": 0.1394,
3039
+ "step": 426
3040
+ },
3041
+ {
3042
+ "epoch": 1.7451381780962127,
3043
+ "grad_norm": 0.8992868065834045,
3044
+ "learning_rate": 7.95591561586811e-06,
3045
+ "loss": 0.1467,
3046
+ "step": 427
3047
+ },
3048
+ {
3049
+ "epoch": 1.7492323439099282,
3050
+ "grad_norm": 0.8938621878623962,
3051
+ "learning_rate": 7.912129107213417e-06,
3052
+ "loss": 0.1436,
3053
+ "step": 428
3054
+ },
3055
+ {
3056
+ "epoch": 1.7533265097236437,
3057
+ "grad_norm": 0.9230063557624817,
3058
+ "learning_rate": 7.868384413205842e-06,
3059
+ "loss": 0.1428,
3060
+ "step": 429
3061
+ },
3062
+ {
3063
+ "epoch": 1.7574206755373591,
3064
+ "grad_norm": 1.0105928182601929,
3065
+ "learning_rate": 7.824682409938328e-06,
3066
+ "loss": 0.1624,
3067
+ "step": 430
3068
+ },
3069
+ {
3070
+ "epoch": 1.7615148413510746,
3071
+ "grad_norm": 0.9786428213119507,
3072
+ "learning_rate": 7.781023972648826e-06,
3073
+ "loss": 0.1508,
3074
+ "step": 431
3075
+ },
3076
+ {
3077
+ "epoch": 1.76560900716479,
3078
+ "grad_norm": 0.9351881742477417,
3079
+ "learning_rate": 7.73740997570278e-06,
3080
+ "loss": 0.1473,
3081
+ "step": 432
3082
+ },
3083
+ {
3084
+ "epoch": 1.7697031729785055,
3085
+ "grad_norm": 0.9618210196495056,
3086
+ "learning_rate": 7.6938412925756e-06,
3087
+ "loss": 0.1374,
3088
+ "step": 433
3089
+ },
3090
+ {
3091
+ "epoch": 1.773797338792221,
3092
+ "grad_norm": 0.9136247634887695,
3093
+ "learning_rate": 7.650318795835179e-06,
3094
+ "loss": 0.1457,
3095
+ "step": 434
3096
+ },
3097
+ {
3098
+ "epoch": 1.7778915046059365,
3099
+ "grad_norm": 1.2237149477005005,
3100
+ "learning_rate": 7.606843357124426e-06,
3101
+ "loss": 0.1448,
3102
+ "step": 435
3103
+ },
3104
+ {
3105
+ "epoch": 1.781985670419652,
3106
+ "grad_norm": 1.0644303560256958,
3107
+ "learning_rate": 7.563415847143782e-06,
3108
+ "loss": 0.1618,
3109
+ "step": 436
3110
+ },
3111
+ {
3112
+ "epoch": 1.7860798362333674,
3113
+ "grad_norm": 0.992850661277771,
3114
+ "learning_rate": 7.520037135633817e-06,
3115
+ "loss": 0.1432,
3116
+ "step": 437
3117
+ },
3118
+ {
3119
+ "epoch": 1.7901740020470829,
3120
+ "grad_norm": 0.8789179921150208,
3121
+ "learning_rate": 7.476708091357783e-06,
3122
+ "loss": 0.1593,
3123
+ "step": 438
3124
+ },
3125
+ {
3126
+ "epoch": 1.7942681678607983,
3127
+ "grad_norm": 0.8858450055122375,
3128
+ "learning_rate": 7.433429582084233e-06,
3129
+ "loss": 0.1421,
3130
+ "step": 439
3131
+ },
3132
+ {
3133
+ "epoch": 1.7983623336745138,
3134
+ "grad_norm": 0.8538363575935364,
3135
+ "learning_rate": 7.39020247456963e-06,
3136
+ "loss": 0.1368,
3137
+ "step": 440
3138
+ },
3139
+ {
3140
+ "epoch": 1.8024564994882293,
3141
+ "grad_norm": 0.9794362187385559,
3142
+ "learning_rate": 7.347027634540993e-06,
3143
+ "loss": 0.1568,
3144
+ "step": 441
3145
+ },
3146
+ {
3147
+ "epoch": 1.8065506653019447,
3148
+ "grad_norm": 0.9608176350593567,
3149
+ "learning_rate": 7.303905926678565e-06,
3150
+ "loss": 0.1736,
3151
+ "step": 442
3152
+ },
3153
+ {
3154
+ "epoch": 1.8106448311156602,
3155
+ "grad_norm": 0.9341726303100586,
3156
+ "learning_rate": 7.260838214598475e-06,
3157
+ "loss": 0.1559,
3158
+ "step": 443
3159
+ },
3160
+ {
3161
+ "epoch": 1.8147389969293757,
3162
+ "grad_norm": 0.9113818407058716,
3163
+ "learning_rate": 7.217825360835475e-06,
3164
+ "loss": 0.154,
3165
+ "step": 444
3166
+ },
3167
+ {
3168
+ "epoch": 1.8188331627430911,
3169
+ "grad_norm": 0.8818947076797485,
3170
+ "learning_rate": 7.174868226825631e-06,
3171
+ "loss": 0.1391,
3172
+ "step": 445
3173
+ },
3174
+ {
3175
+ "epoch": 1.8229273285568066,
3176
+ "grad_norm": 0.8737187385559082,
3177
+ "learning_rate": 7.131967672889101e-06,
3178
+ "loss": 0.1508,
3179
+ "step": 446
3180
+ },
3181
+ {
3182
+ "epoch": 1.827021494370522,
3183
+ "grad_norm": 0.9715389609336853,
3184
+ "learning_rate": 7.089124558212872e-06,
3185
+ "loss": 0.1368,
3186
+ "step": 447
3187
+ },
3188
+ {
3189
+ "epoch": 1.8311156601842375,
3190
+ "grad_norm": 0.936271607875824,
3191
+ "learning_rate": 7.04633974083359e-06,
3192
+ "loss": 0.1468,
3193
+ "step": 448
3194
+ },
3195
+ {
3196
+ "epoch": 1.835209825997953,
3197
+ "grad_norm": 0.8608719110488892,
3198
+ "learning_rate": 7.003614077620348e-06,
3199
+ "loss": 0.1405,
3200
+ "step": 449
3201
+ },
3202
+ {
3203
+ "epoch": 1.8393039918116685,
3204
+ "grad_norm": 1.0865558385849,
3205
+ "learning_rate": 6.960948424257532e-06,
3206
+ "loss": 0.141,
3207
+ "step": 450
3208
+ },
3209
+ {
3210
+ "epoch": 1.843398157625384,
3211
+ "grad_norm": 0.8026862740516663,
3212
+ "learning_rate": 6.918343635227694e-06,
3213
+ "loss": 0.1264,
3214
+ "step": 451
3215
+ },
3216
+ {
3217
+ "epoch": 1.8474923234390994,
3218
+ "grad_norm": 0.9582161903381348,
3219
+ "learning_rate": 6.8758005637944245e-06,
3220
+ "loss": 0.1599,
3221
+ "step": 452
3222
+ },
3223
+ {
3224
+ "epoch": 1.8515864892528149,
3225
+ "grad_norm": 1.0018301010131836,
3226
+ "learning_rate": 6.833320061985278e-06,
3227
+ "loss": 0.155,
3228
+ "step": 453
3229
+ },
3230
+ {
3231
+ "epoch": 1.8556806550665303,
3232
+ "grad_norm": 0.9807232618331909,
3233
+ "learning_rate": 6.7909029805746855e-06,
3234
+ "loss": 0.1519,
3235
+ "step": 454
3236
+ },
3237
+ {
3238
+ "epoch": 1.8597748208802458,
3239
+ "grad_norm": 0.8871752023696899,
3240
+ "learning_rate": 6.7485501690669495e-06,
3241
+ "loss": 0.1231,
3242
+ "step": 455
3243
+ },
3244
+ {
3245
+ "epoch": 1.863868986693961,
3246
+ "grad_norm": 0.9024534225463867,
3247
+ "learning_rate": 6.706262475679205e-06,
3248
+ "loss": 0.1472,
3249
+ "step": 456
3250
+ },
3251
+ {
3252
+ "epoch": 1.8679631525076765,
3253
+ "grad_norm": 1.037083387374878,
3254
+ "learning_rate": 6.664040747324437e-06,
3255
+ "loss": 0.149,
3256
+ "step": 457
3257
+ },
3258
+ {
3259
+ "epoch": 1.872057318321392,
3260
+ "grad_norm": 1.0350216627120972,
3261
+ "learning_rate": 6.62188582959453e-06,
3262
+ "loss": 0.151,
3263
+ "step": 458
3264
+ },
3265
+ {
3266
+ "epoch": 1.8761514841351075,
3267
+ "grad_norm": 0.8358607292175293,
3268
+ "learning_rate": 6.579798566743314e-06,
3269
+ "loss": 0.1331,
3270
+ "step": 459
3271
+ },
3272
+ {
3273
+ "epoch": 1.880245649948823,
3274
+ "grad_norm": 0.9464243054389954,
3275
+ "learning_rate": 6.537779801669677e-06,
3276
+ "loss": 0.1338,
3277
+ "step": 460
3278
+ },
3279
+ {
3280
+ "epoch": 1.8843398157625384,
3281
+ "grad_norm": 0.9431869983673096,
3282
+ "learning_rate": 6.495830375900665e-06,
3283
+ "loss": 0.1404,
3284
+ "step": 461
3285
+ },
3286
+ {
3287
+ "epoch": 1.8884339815762539,
3288
+ "grad_norm": 0.9446228742599487,
3289
+ "learning_rate": 6.453951129574644e-06,
3290
+ "loss": 0.1598,
3291
+ "step": 462
3292
+ },
3293
+ {
3294
+ "epoch": 1.8925281473899693,
3295
+ "grad_norm": 0.9133023023605347,
3296
+ "learning_rate": 6.41214290142447e-06,
3297
+ "loss": 0.1415,
3298
+ "step": 463
3299
+ },
3300
+ {
3301
+ "epoch": 1.8966223132036848,
3302
+ "grad_norm": 0.8346714377403259,
3303
+ "learning_rate": 6.370406528760675e-06,
3304
+ "loss": 0.1384,
3305
+ "step": 464
3306
+ },
3307
+ {
3308
+ "epoch": 1.9007164790174,
3309
+ "grad_norm": 0.9194797277450562,
3310
+ "learning_rate": 6.3287428474547256e-06,
3311
+ "loss": 0.1451,
3312
+ "step": 465
3313
+ },
3314
+ {
3315
+ "epoch": 1.9048106448311155,
3316
+ "grad_norm": 1.0291615724563599,
3317
+ "learning_rate": 6.287152691922264e-06,
3318
+ "loss": 0.143,
3319
+ "step": 466
3320
+ },
3321
+ {
3322
+ "epoch": 1.908904810644831,
3323
+ "grad_norm": 0.9120848178863525,
3324
+ "learning_rate": 6.245636895106403e-06,
3325
+ "loss": 0.1471,
3326
+ "step": 467
3327
+ },
3328
+ {
3329
+ "epoch": 1.9129989764585464,
3330
+ "grad_norm": 0.9780627489089966,
3331
+ "learning_rate": 6.204196288461037e-06,
3332
+ "loss": 0.1532,
3333
+ "step": 468
3334
+ },
3335
+ {
3336
+ "epoch": 1.917093142272262,
3337
+ "grad_norm": 0.9170928597450256,
3338
+ "learning_rate": 6.162831701934203e-06,
3339
+ "loss": 0.1428,
3340
+ "step": 469
3341
+ },
3342
+ {
3343
+ "epoch": 1.9211873080859774,
3344
+ "grad_norm": 0.8668283224105835,
3345
+ "learning_rate": 6.121543963951453e-06,
3346
+ "loss": 0.1375,
3347
+ "step": 470
3348
+ },
3349
+ {
3350
+ "epoch": 1.9252814738996928,
3351
+ "grad_norm": 0.9142316579818726,
3352
+ "learning_rate": 6.080333901399252e-06,
3353
+ "loss": 0.1376,
3354
+ "step": 471
3355
+ },
3356
+ {
3357
+ "epoch": 1.9293756397134083,
3358
+ "grad_norm": 0.9596243500709534,
3359
+ "learning_rate": 6.039202339608432e-06,
3360
+ "loss": 0.1519,
3361
+ "step": 472
3362
+ },
3363
+ {
3364
+ "epoch": 1.9334698055271238,
3365
+ "grad_norm": 0.8200681209564209,
3366
+ "learning_rate": 5.998150102337665e-06,
3367
+ "loss": 0.1294,
3368
+ "step": 473
3369
+ },
3370
+ {
3371
+ "epoch": 1.9375639713408392,
3372
+ "grad_norm": 0.9270857572555542,
3373
+ "learning_rate": 5.957178011756952e-06,
3374
+ "loss": 0.1455,
3375
+ "step": 474
3376
+ },
3377
+ {
3378
+ "epoch": 1.9416581371545547,
3379
+ "grad_norm": 1.033295750617981,
3380
+ "learning_rate": 5.9162868884311596e-06,
3381
+ "loss": 0.1554,
3382
+ "step": 475
3383
+ },
3384
+ {
3385
+ "epoch": 1.9457523029682702,
3386
+ "grad_norm": 0.8937323689460754,
3387
+ "learning_rate": 5.875477551303596e-06,
3388
+ "loss": 0.151,
3389
+ "step": 476
3390
+ },
3391
+ {
3392
+ "epoch": 1.9498464687819856,
3393
+ "grad_norm": 0.9521363377571106,
3394
+ "learning_rate": 5.834750817679606e-06,
3395
+ "loss": 0.1327,
3396
+ "step": 477
3397
+ },
3398
+ {
3399
+ "epoch": 1.953940634595701,
3400
+ "grad_norm": 0.9314703941345215,
3401
+ "learning_rate": 5.794107503210187e-06,
3402
+ "loss": 0.1425,
3403
+ "step": 478
3404
+ },
3405
+ {
3406
+ "epoch": 1.9580348004094166,
3407
+ "grad_norm": 0.975556492805481,
3408
+ "learning_rate": 5.753548421875686e-06,
3409
+ "loss": 0.1439,
3410
+ "step": 479
3411
+ },
3412
+ {
3413
+ "epoch": 1.962128966223132,
3414
+ "grad_norm": 0.952316164970398,
3415
+ "learning_rate": 5.713074385969457e-06,
3416
+ "loss": 0.1403,
3417
+ "step": 480
3418
+ },
3419
+ {
3420
+ "epoch": 1.9662231320368475,
3421
+ "grad_norm": 0.8896644115447998,
3422
+ "learning_rate": 5.672686206081638e-06,
3423
+ "loss": 0.1353,
3424
+ "step": 481
3425
+ },
3426
+ {
3427
+ "epoch": 1.970317297850563,
3428
+ "grad_norm": 0.9095272421836853,
3429
+ "learning_rate": 5.632384691082874e-06,
3430
+ "loss": 0.137,
3431
+ "step": 482
3432
+ },
3433
+ {
3434
+ "epoch": 1.9744114636642784,
3435
+ "grad_norm": 0.823320746421814,
3436
+ "learning_rate": 5.5921706481081405e-06,
3437
+ "loss": 0.1366,
3438
+ "step": 483
3439
+ },
3440
+ {
3441
+ "epoch": 1.978505629477994,
3442
+ "grad_norm": 0.8442295789718628,
3443
+ "learning_rate": 5.55204488254059e-06,
3444
+ "loss": 0.1337,
3445
+ "step": 484
3446
+ },
3447
+ {
3448
+ "epoch": 1.9825997952917094,
3449
+ "grad_norm": 0.9687731266021729,
3450
+ "learning_rate": 5.512008197995379e-06,
3451
+ "loss": 0.1487,
3452
+ "step": 485
3453
+ },
3454
+ {
3455
+ "epoch": 1.9866939611054248,
3456
+ "grad_norm": 0.8544232249259949,
3457
+ "learning_rate": 5.47206139630363e-06,
3458
+ "loss": 0.1433,
3459
+ "step": 486
3460
+ },
3461
+ {
3462
+ "epoch": 1.9907881269191403,
3463
+ "grad_norm": 1.0014803409576416,
3464
+ "learning_rate": 5.432205277496327e-06,
3465
+ "loss": 0.1402,
3466
+ "step": 487
3467
+ },
3468
+ {
3469
+ "epoch": 1.9948822927328558,
3470
+ "grad_norm": 0.9409521222114563,
3471
+ "learning_rate": 5.3924406397883174e-06,
3472
+ "loss": 0.1374,
3473
+ "step": 488
3474
+ }
3475
+ ],
3476
+ "logging_steps": 1,
3477
+ "max_steps": 732,
3478
+ "num_input_tokens_seen": 0,
3479
+ "num_train_epochs": 3,
3480
+ "save_steps": 244,
3481
+ "stateful_callbacks": {
3482
+ "TrainerControl": {
3483
+ "args": {
3484
+ "should_epoch_stop": false,
3485
+ "should_evaluate": false,
3486
+ "should_log": false,
3487
+ "should_save": true,
3488
+ "should_training_stop": false
3489
+ },
3490
+ "attributes": {}
3491
+ }
3492
+ },
3493
+ "total_flos": 7.874994391608197e+17,
3494
+ "train_batch_size": 8,
3495
+ "trial_name": null,
3496
+ "trial_params": null
3497
+ }
3b-w-cot+/checkpoint-488/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:632e641a15180cc852702434a272df94b8012efb84c5e296eb59b1554cdab170
3
+ size 10744
3b-w-cot+/checkpoint-488/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
3b-w-cot+/checkpoint-488/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
3b-w-cot+/checkpoint-732/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-w-cot+/checkpoint-732/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ckpt/3b-w-cot/checkpoint-747",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.49.0",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
3b-w-cot+/checkpoint-732/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
3b-w-cot+/checkpoint-732/global_step730/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2dd01b4273d756f834d5ebd3324e6d0d71312aa8d814f35c6dda8790c5006ba
3
+ size 9306058322
3b-w-cot+/checkpoint-732/global_step730/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e4804f00f9eba5efd889917e4724e26646bac2c402dbc35ec9f1288ebb4160a
3
+ size 9306060690
3b-w-cot+/checkpoint-732/global_step730/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:530e07a5d4c948fb79b8e599c4a31ff8c53744a24058e20367218f137b22a48e
3
+ size 6171993592