Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- README.md +165 -0
- added_tokens.json +24 -0
- checkpoint-127/added_tokens.json +24 -0
- checkpoint-127/config.json +28 -0
- checkpoint-127/generation_config.json +14 -0
- checkpoint-127/latest +1 -0
- checkpoint-127/merges.txt +0 -0
- checkpoint-127/model.safetensors +3 -0
- checkpoint-127/rng_state_0.pth +3 -0
- checkpoint-127/rng_state_1.pth +3 -0
- checkpoint-127/scheduler.pt +3 -0
- checkpoint-127/special_tokens_map.json +31 -0
- checkpoint-127/tokenizer.json +3 -0
- checkpoint-127/tokenizer_config.json +208 -0
- checkpoint-127/trainer_state.json +946 -0
- checkpoint-127/training_args.bin +3 -0
- checkpoint-127/vocab.json +0 -0
- checkpoint-127/zero_to_fp32.py +760 -0
- checkpoint-254/added_tokens.json +24 -0
- checkpoint-254/config.json +28 -0
- checkpoint-254/generation_config.json +14 -0
- checkpoint-254/latest +1 -0
- checkpoint-254/merges.txt +0 -0
- checkpoint-254/model.safetensors +3 -0
- checkpoint-254/rng_state_0.pth +3 -0
- checkpoint-254/rng_state_1.pth +3 -0
- checkpoint-254/scheduler.pt +3 -0
- checkpoint-254/special_tokens_map.json +31 -0
- checkpoint-254/tokenizer.json +3 -0
- checkpoint-254/tokenizer_config.json +208 -0
- checkpoint-254/trainer_state.json +1859 -0
- checkpoint-254/training_args.bin +3 -0
- checkpoint-254/vocab.json +0 -0
- checkpoint-254/zero_to_fp32.py +760 -0
- checkpoint-381/added_tokens.json +24 -0
- checkpoint-381/config.json +28 -0
- checkpoint-381/generation_config.json +14 -0
- checkpoint-381/latest +1 -0
- checkpoint-381/merges.txt +0 -0
- checkpoint-381/model.safetensors +3 -0
- checkpoint-381/rng_state_0.pth +3 -0
- checkpoint-381/rng_state_1.pth +3 -0
- checkpoint-381/scheduler.pt +3 -0
- checkpoint-381/special_tokens_map.json +31 -0
- checkpoint-381/tokenizer.json +3 -0
- checkpoint-381/tokenizer_config.json +208 -0
- checkpoint-381/trainer_state.json +2772 -0
- checkpoint-381/training_args.bin +3 -0
- checkpoint-381/vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-127/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
checkpoint-254/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
checkpoint-381/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
39 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: Qwen/Qwen2.5-1.5B-Instruct
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- train.jsonl
|
9 |
+
model-index:
|
10 |
+
- name: outputs/out
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
18 |
+
<details><summary>See axolotl config</summary>
|
19 |
+
|
20 |
+
axolotl version: `0.6.0`
|
21 |
+
```yaml
|
22 |
+
base_model: Qwen/Qwen2.5-1.5B-Instruct
|
23 |
+
model_type: AutoModelForCausalLM
|
24 |
+
tokenizer_type: AutoTokenizer
|
25 |
+
trust_remote_code: false
|
26 |
+
|
27 |
+
load_in_8bit: false
|
28 |
+
load_in_4bit: false
|
29 |
+
strict: false
|
30 |
+
|
31 |
+
output_dir: ./outputs/out
|
32 |
+
remove_unused_columns: false
|
33 |
+
|
34 |
+
chat_template: qwen_25
|
35 |
+
# chat_template: qwen_25
|
36 |
+
datasets:
|
37 |
+
- path: train.jsonl
|
38 |
+
type: chat_template
|
39 |
+
field_messages: messages
|
40 |
+
message_field_role: role
|
41 |
+
message_field_content: content
|
42 |
+
roles:
|
43 |
+
user:
|
44 |
+
- user
|
45 |
+
assistant:
|
46 |
+
- assistant
|
47 |
+
|
48 |
+
dataset_prepared_path: mr1-sft-1
|
49 |
+
# dataset_prepared_path: ko_r1
|
50 |
+
val_set_size: 0.005
|
51 |
+
eval_sample_packing: False
|
52 |
+
|
53 |
+
sequence_len: 512
|
54 |
+
sample_packing: False
|
55 |
+
pad_to_sequence_len: False
|
56 |
+
|
57 |
+
wandb_project: mergedbench
|
58 |
+
wandb_entity:
|
59 |
+
wandb_watch:
|
60 |
+
wandb_name:
|
61 |
+
wandb_log_model:
|
62 |
+
|
63 |
+
plugins:
|
64 |
+
- axolotl.integrations.liger.LigerPlugin
|
65 |
+
liger_rope: true
|
66 |
+
liger_rms_norm: true
|
67 |
+
liger_swiglu: true
|
68 |
+
liger_fused_linear_cross_entropy: true
|
69 |
+
|
70 |
+
gradient_accumulation_steps: 1
|
71 |
+
micro_batch_size: 128
|
72 |
+
eval_batch_size: 4
|
73 |
+
num_epochs: 3
|
74 |
+
optimizer: paged_adamw_8bit
|
75 |
+
lr_scheduler: cosine
|
76 |
+
learning_rate: 2e-5
|
77 |
+
|
78 |
+
train_on_inputs: false
|
79 |
+
group_by_length: false
|
80 |
+
bf16: auto
|
81 |
+
fp16:
|
82 |
+
tf32: false
|
83 |
+
|
84 |
+
gradient_checkpointing: true
|
85 |
+
gradient_checkpointing_kwargs:
|
86 |
+
use_reentrant: false
|
87 |
+
early_stopping_patience:
|
88 |
+
resume_from_checkpoint:
|
89 |
+
logging_steps: 1
|
90 |
+
xformers_attention:
|
91 |
+
flash_attention: true
|
92 |
+
|
93 |
+
warmup_steps: 10
|
94 |
+
evals_per_epoch: 3
|
95 |
+
eval_max_new_tokens: 128
|
96 |
+
eval_table_size:
|
97 |
+
saves_per_epoch: 1
|
98 |
+
debug:
|
99 |
+
deepspeed: deepspeed_configs/zero1.json
|
100 |
+
weight_decay: 0.01
|
101 |
+
fsdp:
|
102 |
+
fsdp_config:
|
103 |
+
special_tokens:
|
104 |
+
eos_token:
|
105 |
+
```
|
106 |
+
|
107 |
+
</details><br>
|
108 |
+
|
109 |
+
# outputs/out
|
110 |
+
|
111 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the train.jsonl dataset.
|
112 |
+
It achieves the following results on the evaluation set:
|
113 |
+
- Loss: 0.3103
|
114 |
+
|
115 |
+
## Model description
|
116 |
+
|
117 |
+
More information needed
|
118 |
+
|
119 |
+
## Intended uses & limitations
|
120 |
+
|
121 |
+
More information needed
|
122 |
+
|
123 |
+
## Training and evaluation data
|
124 |
+
|
125 |
+
More information needed
|
126 |
+
|
127 |
+
## Training procedure
|
128 |
+
|
129 |
+
### Training hyperparameters
|
130 |
+
|
131 |
+
The following hyperparameters were used during training:
|
132 |
+
- learning_rate: 2e-05
|
133 |
+
- train_batch_size: 128
|
134 |
+
- eval_batch_size: 4
|
135 |
+
- seed: 42
|
136 |
+
- distributed_type: multi-GPU
|
137 |
+
- num_devices: 2
|
138 |
+
- total_train_batch_size: 256
|
139 |
+
- total_eval_batch_size: 8
|
140 |
+
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
141 |
+
- lr_scheduler_type: cosine
|
142 |
+
- lr_scheduler_warmup_steps: 10
|
143 |
+
- num_epochs: 3.0
|
144 |
+
|
145 |
+
### Training results
|
146 |
+
|
147 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
148 |
+
|:-------------:|:------:|:----:|:---------------:|
|
149 |
+
| 4.6099 | 0.0079 | 1 | 3.1001 |
|
150 |
+
| 0.0071 | 0.3386 | 43 | 0.3896 |
|
151 |
+
| 0.0098 | 0.6772 | 86 | 0.3527 |
|
152 |
+
| 0.0026 | 1.0157 | 129 | 0.3306 |
|
153 |
+
| 0.0128 | 1.3543 | 172 | 0.3166 |
|
154 |
+
| 0.0042 | 1.6929 | 215 | 0.3484 |
|
155 |
+
| 0.0019 | 2.0315 | 258 | 0.2931 |
|
156 |
+
| 0.0039 | 2.3701 | 301 | 0.3032 |
|
157 |
+
| 0.0 | 2.7087 | 344 | 0.3103 |
|
158 |
+
|
159 |
+
|
160 |
+
### Framework versions
|
161 |
+
|
162 |
+
- Transformers 4.48.1
|
163 |
+
- Pytorch 2.5.1+cu121
|
164 |
+
- Datasets 3.2.0
|
165 |
+
- Tokenizers 0.21.0
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-127/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-127/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-1.5B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151665
|
28 |
+
}
|
checkpoint-127/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
checkpoint-127/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step127
|
checkpoint-127/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-127/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16c2b94cb0a2b46fadee1abbb18577e9280cc0f41f0a32589eba659eaeb867f6
|
3 |
+
size 3552549728
|
checkpoint-127/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9affc1541e7e94c18354d5173bc55400c5f07faf3d080c6d453d48e7a8d6ac3
|
3 |
+
size 14512
|
checkpoint-127/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4748c3ebf0e4c051c58b92e4a8c5b87cdb39d55cfdc2aec81a1baef0f02fc113
|
3 |
+
size 14512
|
checkpoint-127/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3971f2dc488a5a415a2f023c2206a1ad3b82f9265741b7f18e7f2a8d779a4734
|
3 |
+
size 1064
|
checkpoint-127/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-127/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-127/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-127/trainer_state.json
ADDED
@@ -0,0 +1,946 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 43,
|
6 |
+
"global_step": 127,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.007874015748031496,
|
13 |
+
"grad_norm": 118.11203002929688,
|
14 |
+
"learning_rate": 2.0000000000000003e-06,
|
15 |
+
"loss": 4.6099,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.007874015748031496,
|
20 |
+
"eval_loss": 3.1001100540161133,
|
21 |
+
"eval_runtime": 5.3966,
|
22 |
+
"eval_samples_per_second": 30.204,
|
23 |
+
"eval_steps_per_second": 3.891,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.015748031496062992,
|
28 |
+
"grad_norm": 118.4310302734375,
|
29 |
+
"learning_rate": 4.000000000000001e-06,
|
30 |
+
"loss": 4.5857,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.023622047244094488,
|
35 |
+
"grad_norm": 103.37439727783203,
|
36 |
+
"learning_rate": 6e-06,
|
37 |
+
"loss": 4.3069,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.031496062992125984,
|
42 |
+
"grad_norm": 75.05075073242188,
|
43 |
+
"learning_rate": 8.000000000000001e-06,
|
44 |
+
"loss": 3.8754,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.03937007874015748,
|
49 |
+
"grad_norm": 50.459983825683594,
|
50 |
+
"learning_rate": 1e-05,
|
51 |
+
"loss": 3.2841,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.047244094488188976,
|
56 |
+
"grad_norm": 47.4603385925293,
|
57 |
+
"learning_rate": 1.2e-05,
|
58 |
+
"loss": 2.4285,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.05511811023622047,
|
63 |
+
"grad_norm": 32.362667083740234,
|
64 |
+
"learning_rate": 1.4e-05,
|
65 |
+
"loss": 1.8177,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.06299212598425197,
|
70 |
+
"grad_norm": 22.846933364868164,
|
71 |
+
"learning_rate": 1.6000000000000003e-05,
|
72 |
+
"loss": 1.1567,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.07086614173228346,
|
77 |
+
"grad_norm": 17.060213088989258,
|
78 |
+
"learning_rate": 1.8e-05,
|
79 |
+
"loss": 0.8257,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.07874015748031496,
|
84 |
+
"grad_norm": 14.415579795837402,
|
85 |
+
"learning_rate": 2e-05,
|
86 |
+
"loss": 0.4257,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.08661417322834646,
|
91 |
+
"grad_norm": 7.753712177276611,
|
92 |
+
"learning_rate": 1.999964147509006e-05,
|
93 |
+
"loss": 0.2976,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.09448818897637795,
|
98 |
+
"grad_norm": 26.883708953857422,
|
99 |
+
"learning_rate": 1.9998565926068253e-05,
|
100 |
+
"loss": 0.3365,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.10236220472440945,
|
105 |
+
"grad_norm": 10.675631523132324,
|
106 |
+
"learning_rate": 1.9996773430056806e-05,
|
107 |
+
"loss": 0.2161,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.11023622047244094,
|
112 |
+
"grad_norm": 6.670111179351807,
|
113 |
+
"learning_rate": 1.999426411558661e-05,
|
114 |
+
"loss": 0.1816,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.11811023622047244,
|
119 |
+
"grad_norm": 8.878239631652832,
|
120 |
+
"learning_rate": 1.9991038162588018e-05,
|
121 |
+
"loss": 0.1567,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.12598425196850394,
|
126 |
+
"grad_norm": 2.9917383193969727,
|
127 |
+
"learning_rate": 1.9987095802377933e-05,
|
128 |
+
"loss": 0.0813,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.13385826771653545,
|
133 |
+
"grad_norm": 1.0548763275146484,
|
134 |
+
"learning_rate": 1.9982437317643218e-05,
|
135 |
+
"loss": 0.0217,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.14173228346456693,
|
140 |
+
"grad_norm": 2.8778488636016846,
|
141 |
+
"learning_rate": 1.9977063042420438e-05,
|
142 |
+
"loss": 0.0618,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.14960629921259844,
|
147 |
+
"grad_norm": 0.9811734557151794,
|
148 |
+
"learning_rate": 1.99709733620719e-05,
|
149 |
+
"loss": 0.0175,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.15748031496062992,
|
154 |
+
"grad_norm": 0.7218202948570251,
|
155 |
+
"learning_rate": 1.996416871325803e-05,
|
156 |
+
"loss": 0.0302,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.16535433070866143,
|
161 |
+
"grad_norm": 1.2746995687484741,
|
162 |
+
"learning_rate": 1.995664958390604e-05,
|
163 |
+
"loss": 0.0453,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.1732283464566929,
|
168 |
+
"grad_norm": 0.9413469433784485,
|
169 |
+
"learning_rate": 1.9948416513174976e-05,
|
170 |
+
"loss": 0.0175,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.18110236220472442,
|
175 |
+
"grad_norm": 1.4161137342453003,
|
176 |
+
"learning_rate": 1.9939470091417012e-05,
|
177 |
+
"loss": 0.0277,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.1889763779527559,
|
182 |
+
"grad_norm": 2.2721235752105713,
|
183 |
+
"learning_rate": 1.992981096013517e-05,
|
184 |
+
"loss": 0.0589,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.1968503937007874,
|
189 |
+
"grad_norm": 1.143970251083374,
|
190 |
+
"learning_rate": 1.9919439811937283e-05,
|
191 |
+
"loss": 0.0182,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.2047244094488189,
|
196 |
+
"grad_norm": 0.8054028749465942,
|
197 |
+
"learning_rate": 1.9908357390486342e-05,
|
198 |
+
"loss": 0.0211,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.2125984251968504,
|
203 |
+
"grad_norm": 1.4449081420898438,
|
204 |
+
"learning_rate": 1.989656449044718e-05,
|
205 |
+
"loss": 0.0244,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.2204724409448819,
|
210 |
+
"grad_norm": 0.49216631054878235,
|
211 |
+
"learning_rate": 1.988406195742948e-05,
|
212 |
+
"loss": 0.005,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.2283464566929134,
|
217 |
+
"grad_norm": 0.9945647716522217,
|
218 |
+
"learning_rate": 1.987085068792715e-05,
|
219 |
+
"loss": 0.0373,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.23622047244094488,
|
224 |
+
"grad_norm": 1.1753748655319214,
|
225 |
+
"learning_rate": 1.9856931629254032e-05,
|
226 |
+
"loss": 0.0217,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.2440944881889764,
|
231 |
+
"grad_norm": 0.5960403680801392,
|
232 |
+
"learning_rate": 1.984230577947597e-05,
|
233 |
+
"loss": 0.0157,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.25196850393700787,
|
238 |
+
"grad_norm": 0.3657272160053253,
|
239 |
+
"learning_rate": 1.9826974187339267e-05,
|
240 |
+
"loss": 0.0082,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.25984251968503935,
|
245 |
+
"grad_norm": 1.1290266513824463,
|
246 |
+
"learning_rate": 1.981093795219546e-05,
|
247 |
+
"loss": 0.0236,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.2677165354330709,
|
252 |
+
"grad_norm": 1.673962116241455,
|
253 |
+
"learning_rate": 1.9794198223922496e-05,
|
254 |
+
"loss": 0.0182,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.2755905511811024,
|
259 |
+
"grad_norm": 0.540355384349823,
|
260 |
+
"learning_rate": 1.9776756202842297e-05,
|
261 |
+
"loss": 0.011,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.28346456692913385,
|
266 |
+
"grad_norm": 0.3380790054798126,
|
267 |
+
"learning_rate": 1.9758613139634662e-05,
|
268 |
+
"loss": 0.0048,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.29133858267716534,
|
273 |
+
"grad_norm": 1.886232852935791,
|
274 |
+
"learning_rate": 1.9739770335247616e-05,
|
275 |
+
"loss": 0.0157,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.2992125984251969,
|
280 |
+
"grad_norm": 2.140639305114746,
|
281 |
+
"learning_rate": 1.972022914080411e-05,
|
282 |
+
"loss": 0.0393,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.30708661417322836,
|
287 |
+
"grad_norm": 0.35308870673179626,
|
288 |
+
"learning_rate": 1.9699990957505136e-05,
|
289 |
+
"loss": 0.0074,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.31496062992125984,
|
294 |
+
"grad_norm": 0.3918301463127136,
|
295 |
+
"learning_rate": 1.9679057236529266e-05,
|
296 |
+
"loss": 0.0083,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.3228346456692913,
|
301 |
+
"grad_norm": 0.4406338632106781,
|
302 |
+
"learning_rate": 1.965742947892858e-05,
|
303 |
+
"loss": 0.0152,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.33070866141732286,
|
308 |
+
"grad_norm": 0.6819682121276855,
|
309 |
+
"learning_rate": 1.9635109235521057e-05,
|
310 |
+
"loss": 0.0091,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.33858267716535434,
|
315 |
+
"grad_norm": 0.6794927716255188,
|
316 |
+
"learning_rate": 1.961209810677934e-05,
|
317 |
+
"loss": 0.0071,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.33858267716535434,
|
322 |
+
"eval_loss": 0.3895845115184784,
|
323 |
+
"eval_runtime": 6.5602,
|
324 |
+
"eval_samples_per_second": 24.847,
|
325 |
+
"eval_steps_per_second": 3.201,
|
326 |
+
"step": 43
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.3464566929133858,
|
330 |
+
"grad_norm": 0.3874967694282532,
|
331 |
+
"learning_rate": 1.9588397742716004e-05,
|
332 |
+
"loss": 0.0089,
|
333 |
+
"step": 44
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.3543307086614173,
|
337 |
+
"grad_norm": 0.5577577352523804,
|
338 |
+
"learning_rate": 1.9564009842765225e-05,
|
339 |
+
"loss": 0.0098,
|
340 |
+
"step": 45
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.36220472440944884,
|
344 |
+
"grad_norm": 0.8152347207069397,
|
345 |
+
"learning_rate": 1.9538936155660934e-05,
|
346 |
+
"loss": 0.0118,
|
347 |
+
"step": 46
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.3700787401574803,
|
351 |
+
"grad_norm": 0.2971118688583374,
|
352 |
+
"learning_rate": 1.951317847931141e-05,
|
353 |
+
"loss": 0.0084,
|
354 |
+
"step": 47
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.3779527559055118,
|
358 |
+
"grad_norm": 1.0286651849746704,
|
359 |
+
"learning_rate": 1.9486738660670373e-05,
|
360 |
+
"loss": 0.0123,
|
361 |
+
"step": 48
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.3858267716535433,
|
365 |
+
"grad_norm": 0.5227222442626953,
|
366 |
+
"learning_rate": 1.945961859560454e-05,
|
367 |
+
"loss": 0.0144,
|
368 |
+
"step": 49
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.3937007874015748,
|
372 |
+
"grad_norm": 0.461935818195343,
|
373 |
+
"learning_rate": 1.943182022875769e-05,
|
374 |
+
"loss": 0.0119,
|
375 |
+
"step": 50
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.4015748031496063,
|
379 |
+
"grad_norm": 1.2550626993179321,
|
380 |
+
"learning_rate": 1.940334555341122e-05,
|
381 |
+
"loss": 0.013,
|
382 |
+
"step": 51
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 0.4094488188976378,
|
386 |
+
"grad_norm": 0.37549659609794617,
|
387 |
+
"learning_rate": 1.9374196611341212e-05,
|
388 |
+
"loss": 0.0181,
|
389 |
+
"step": 52
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.41732283464566927,
|
393 |
+
"grad_norm": 0.3444191515445709,
|
394 |
+
"learning_rate": 1.9344375492672024e-05,
|
395 |
+
"loss": 0.0111,
|
396 |
+
"step": 53
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.4251968503937008,
|
400 |
+
"grad_norm": 0.3489387333393097,
|
401 |
+
"learning_rate": 1.9313884335726443e-05,
|
402 |
+
"loss": 0.0111,
|
403 |
+
"step": 54
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.4330708661417323,
|
407 |
+
"grad_norm": 0.26080814003944397,
|
408 |
+
"learning_rate": 1.9282725326872324e-05,
|
409 |
+
"loss": 0.0091,
|
410 |
+
"step": 55
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.4409448818897638,
|
414 |
+
"grad_norm": 0.1390451341867447,
|
415 |
+
"learning_rate": 1.9250900700365837e-05,
|
416 |
+
"loss": 0.0033,
|
417 |
+
"step": 56
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.44881889763779526,
|
421 |
+
"grad_norm": 0.20499111711978912,
|
422 |
+
"learning_rate": 1.921841273819125e-05,
|
423 |
+
"loss": 0.0066,
|
424 |
+
"step": 57
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.4566929133858268,
|
428 |
+
"grad_norm": 2.185487747192383,
|
429 |
+
"learning_rate": 1.918526376989731e-05,
|
430 |
+
"loss": 0.0095,
|
431 |
+
"step": 58
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.4645669291338583,
|
435 |
+
"grad_norm": 0.23939816653728485,
|
436 |
+
"learning_rate": 1.9151456172430186e-05,
|
437 |
+
"loss": 0.0048,
|
438 |
+
"step": 59
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.47244094488188976,
|
442 |
+
"grad_norm": 0.41510018706321716,
|
443 |
+
"learning_rate": 1.911699236996305e-05,
|
444 |
+
"loss": 0.0077,
|
445 |
+
"step": 60
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.48031496062992124,
|
449 |
+
"grad_norm": 0.264318585395813,
|
450 |
+
"learning_rate": 1.9081874833722234e-05,
|
451 |
+
"loss": 0.0129,
|
452 |
+
"step": 61
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.4881889763779528,
|
456 |
+
"grad_norm": 1.0443968772888184,
|
457 |
+
"learning_rate": 1.9046106081810047e-05,
|
458 |
+
"loss": 0.0035,
|
459 |
+
"step": 62
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.49606299212598426,
|
463 |
+
"grad_norm": 0.2800132632255554,
|
464 |
+
"learning_rate": 1.900968867902419e-05,
|
465 |
+
"loss": 0.0057,
|
466 |
+
"step": 63
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.5039370078740157,
|
470 |
+
"grad_norm": 1.114960789680481,
|
471 |
+
"learning_rate": 1.8972625236673887e-05,
|
472 |
+
"loss": 0.0123,
|
473 |
+
"step": 64
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.5118110236220472,
|
477 |
+
"grad_norm": 0.5027065873146057,
|
478 |
+
"learning_rate": 1.8934918412392596e-05,
|
479 |
+
"loss": 0.0052,
|
480 |
+
"step": 65
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.5196850393700787,
|
484 |
+
"grad_norm": 0.5564169883728027,
|
485 |
+
"learning_rate": 1.8896570909947477e-05,
|
486 |
+
"loss": 0.0085,
|
487 |
+
"step": 66
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.5275590551181102,
|
491 |
+
"grad_norm": 0.7567198872566223,
|
492 |
+
"learning_rate": 1.8857585479045493e-05,
|
493 |
+
"loss": 0.0054,
|
494 |
+
"step": 67
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.5354330708661418,
|
498 |
+
"grad_norm": 0.13573969900608063,
|
499 |
+
"learning_rate": 1.8817964915136277e-05,
|
500 |
+
"loss": 0.0008,
|
501 |
+
"step": 68
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.5433070866141733,
|
505 |
+
"grad_norm": 0.2704390287399292,
|
506 |
+
"learning_rate": 1.8777712059211643e-05,
|
507 |
+
"loss": 0.0078,
|
508 |
+
"step": 69
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.5511811023622047,
|
512 |
+
"grad_norm": 0.6014392971992493,
|
513 |
+
"learning_rate": 1.8736829797601903e-05,
|
514 |
+
"loss": 0.0059,
|
515 |
+
"step": 70
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.5590551181102362,
|
519 |
+
"grad_norm": 0.5487034916877747,
|
520 |
+
"learning_rate": 1.8695321061768886e-05,
|
521 |
+
"loss": 0.0097,
|
522 |
+
"step": 71
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.5669291338582677,
|
526 |
+
"grad_norm": 0.6670834422111511,
|
527 |
+
"learning_rate": 1.8653188828095754e-05,
|
528 |
+
"loss": 0.011,
|
529 |
+
"step": 72
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.5748031496062992,
|
533 |
+
"grad_norm": 0.1795203685760498,
|
534 |
+
"learning_rate": 1.8610436117673557e-05,
|
535 |
+
"loss": 0.0067,
|
536 |
+
"step": 73
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.5826771653543307,
|
540 |
+
"grad_norm": 1.768436074256897,
|
541 |
+
"learning_rate": 1.8567065996084628e-05,
|
542 |
+
"loss": 0.0096,
|
543 |
+
"step": 74
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.5905511811023622,
|
547 |
+
"grad_norm": 0.26233312487602234,
|
548 |
+
"learning_rate": 1.8523081573182754e-05,
|
549 |
+
"loss": 0.0124,
|
550 |
+
"step": 75
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.5984251968503937,
|
554 |
+
"grad_norm": 0.3775719404220581,
|
555 |
+
"learning_rate": 1.847848600287019e-05,
|
556 |
+
"loss": 0.0052,
|
557 |
+
"step": 76
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.6062992125984252,
|
561 |
+
"grad_norm": 1.0016565322875977,
|
562 |
+
"learning_rate": 1.8433282482871497e-05,
|
563 |
+
"loss": 0.0058,
|
564 |
+
"step": 77
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.6141732283464567,
|
568 |
+
"grad_norm": 0.20153792202472687,
|
569 |
+
"learning_rate": 1.8387474254504265e-05,
|
570 |
+
"loss": 0.0056,
|
571 |
+
"step": 78
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.6220472440944882,
|
575 |
+
"grad_norm": 0.5119822025299072,
|
576 |
+
"learning_rate": 1.8341064602446686e-05,
|
577 |
+
"loss": 0.0079,
|
578 |
+
"step": 79
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.6299212598425197,
|
582 |
+
"grad_norm": 1.5781004428863525,
|
583 |
+
"learning_rate": 1.829405685450202e-05,
|
584 |
+
"loss": 0.008,
|
585 |
+
"step": 80
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.6377952755905512,
|
589 |
+
"grad_norm": 0.23826757073402405,
|
590 |
+
"learning_rate": 1.824645438135999e-05,
|
591 |
+
"loss": 0.0041,
|
592 |
+
"step": 81
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 0.6456692913385826,
|
596 |
+
"grad_norm": 0.6386727690696716,
|
597 |
+
"learning_rate": 1.8198260596355077e-05,
|
598 |
+
"loss": 0.0188,
|
599 |
+
"step": 82
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.6535433070866141,
|
603 |
+
"grad_norm": 0.9503199458122253,
|
604 |
+
"learning_rate": 1.814947895522176e-05,
|
605 |
+
"loss": 0.008,
|
606 |
+
"step": 83
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.6614173228346457,
|
610 |
+
"grad_norm": 0.2040701061487198,
|
611 |
+
"learning_rate": 1.8100112955846746e-05,
|
612 |
+
"loss": 0.0038,
|
613 |
+
"step": 84
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.6692913385826772,
|
617 |
+
"grad_norm": 0.3660199046134949,
|
618 |
+
"learning_rate": 1.805016613801813e-05,
|
619 |
+
"loss": 0.0148,
|
620 |
+
"step": 85
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.6771653543307087,
|
624 |
+
"grad_norm": 1.0502821207046509,
|
625 |
+
"learning_rate": 1.7999642083171576e-05,
|
626 |
+
"loss": 0.0098,
|
627 |
+
"step": 86
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.6771653543307087,
|
631 |
+
"eval_loss": 0.3526817262172699,
|
632 |
+
"eval_runtime": 6.6167,
|
633 |
+
"eval_samples_per_second": 24.635,
|
634 |
+
"eval_steps_per_second": 3.174,
|
635 |
+
"step": 86
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.6850393700787402,
|
639 |
+
"grad_norm": 0.13735969364643097,
|
640 |
+
"learning_rate": 1.7948544414133534e-05,
|
641 |
+
"loss": 0.0022,
|
642 |
+
"step": 87
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 0.6929133858267716,
|
646 |
+
"grad_norm": 0.6425012946128845,
|
647 |
+
"learning_rate": 1.7896876794861443e-05,
|
648 |
+
"loss": 0.0086,
|
649 |
+
"step": 88
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.7007874015748031,
|
653 |
+
"grad_norm": 0.7540380954742432,
|
654 |
+
"learning_rate": 1.7844642930181008e-05,
|
655 |
+
"loss": 0.0062,
|
656 |
+
"step": 89
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.7086614173228346,
|
660 |
+
"grad_norm": 0.6727365255355835,
|
661 |
+
"learning_rate": 1.779184656552056e-05,
|
662 |
+
"loss": 0.0027,
|
663 |
+
"step": 90
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.7165354330708661,
|
667 |
+
"grad_norm": 0.14059337973594666,
|
668 |
+
"learning_rate": 1.773849148664247e-05,
|
669 |
+
"loss": 0.0056,
|
670 |
+
"step": 91
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 0.7244094488188977,
|
674 |
+
"grad_norm": 0.33292093873023987,
|
675 |
+
"learning_rate": 1.7684581519371714e-05,
|
676 |
+
"loss": 0.0047,
|
677 |
+
"step": 92
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 0.7322834645669292,
|
681 |
+
"grad_norm": 0.3809877932071686,
|
682 |
+
"learning_rate": 1.7630120529321518e-05,
|
683 |
+
"loss": 0.0139,
|
684 |
+
"step": 93
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 0.7401574803149606,
|
688 |
+
"grad_norm": 1.729589819908142,
|
689 |
+
"learning_rate": 1.7575112421616203e-05,
|
690 |
+
"loss": 0.0128,
|
691 |
+
"step": 94
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.7480314960629921,
|
695 |
+
"grad_norm": 0.18192608654499054,
|
696 |
+
"learning_rate": 1.751956114061113e-05,
|
697 |
+
"loss": 0.0025,
|
698 |
+
"step": 95
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.7559055118110236,
|
702 |
+
"grad_norm": 1.0333118438720703,
|
703 |
+
"learning_rate": 1.7463470669609907e-05,
|
704 |
+
"loss": 0.006,
|
705 |
+
"step": 96
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.7637795275590551,
|
709 |
+
"grad_norm": 0.7247685194015503,
|
710 |
+
"learning_rate": 1.7406845030578747e-05,
|
711 |
+
"loss": 0.0073,
|
712 |
+
"step": 97
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.7716535433070866,
|
716 |
+
"grad_norm": 0.06979379802942276,
|
717 |
+
"learning_rate": 1.734968828385808e-05,
|
718 |
+
"loss": 0.0005,
|
719 |
+
"step": 98
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.7795275590551181,
|
723 |
+
"grad_norm": 0.5137119293212891,
|
724 |
+
"learning_rate": 1.729200452787139e-05,
|
725 |
+
"loss": 0.0082,
|
726 |
+
"step": 99
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"epoch": 0.7874015748031497,
|
730 |
+
"grad_norm": 0.4704137146472931,
|
731 |
+
"learning_rate": 1.7233797898831376e-05,
|
732 |
+
"loss": 0.005,
|
733 |
+
"step": 100
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.7952755905511811,
|
737 |
+
"grad_norm": 0.28564465045928955,
|
738 |
+
"learning_rate": 1.717507257044331e-05,
|
739 |
+
"loss": 0.0052,
|
740 |
+
"step": 101
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.8031496062992126,
|
744 |
+
"grad_norm": 0.17685537040233612,
|
745 |
+
"learning_rate": 1.711583275360582e-05,
|
746 |
+
"loss": 0.0024,
|
747 |
+
"step": 102
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.8110236220472441,
|
751 |
+
"grad_norm": 0.45714935660362244,
|
752 |
+
"learning_rate": 1.7056082696108896e-05,
|
753 |
+
"loss": 0.0072,
|
754 |
+
"step": 103
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.8188976377952756,
|
758 |
+
"grad_norm": 0.4373086988925934,
|
759 |
+
"learning_rate": 1.699582668232934e-05,
|
760 |
+
"loss": 0.0051,
|
761 |
+
"step": 104
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.8267716535433071,
|
765 |
+
"grad_norm": 0.8478983640670776,
|
766 |
+
"learning_rate": 1.6935069032923525e-05,
|
767 |
+
"loss": 0.022,
|
768 |
+
"step": 105
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 0.8346456692913385,
|
772 |
+
"grad_norm": 0.16181086003780365,
|
773 |
+
"learning_rate": 1.6873814104517617e-05,
|
774 |
+
"loss": 0.0058,
|
775 |
+
"step": 106
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.84251968503937,
|
779 |
+
"grad_norm": 0.09503592550754547,
|
780 |
+
"learning_rate": 1.6812066289395157e-05,
|
781 |
+
"loss": 0.0009,
|
782 |
+
"step": 107
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.8503937007874016,
|
786 |
+
"grad_norm": 0.7462632060050964,
|
787 |
+
"learning_rate": 1.6749830015182106e-05,
|
788 |
+
"loss": 0.0044,
|
789 |
+
"step": 108
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.8582677165354331,
|
793 |
+
"grad_norm": 0.07221701741218567,
|
794 |
+
"learning_rate": 1.6687109744529394e-05,
|
795 |
+
"loss": 0.0015,
|
796 |
+
"step": 109
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 0.8661417322834646,
|
800 |
+
"grad_norm": 0.08999036252498627,
|
801 |
+
"learning_rate": 1.6623909974792888e-05,
|
802 |
+
"loss": 0.0023,
|
803 |
+
"step": 110
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 0.8740157480314961,
|
807 |
+
"grad_norm": 0.42536938190460205,
|
808 |
+
"learning_rate": 1.656023523771095e-05,
|
809 |
+
"loss": 0.005,
|
810 |
+
"step": 111
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 0.8818897637795275,
|
814 |
+
"grad_norm": 0.7885191440582275,
|
815 |
+
"learning_rate": 1.6496090099079452e-05,
|
816 |
+
"loss": 0.0103,
|
817 |
+
"step": 112
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 0.889763779527559,
|
821 |
+
"grad_norm": 0.16610018908977509,
|
822 |
+
"learning_rate": 1.64314791584244e-05,
|
823 |
+
"loss": 0.006,
|
824 |
+
"step": 113
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.8976377952755905,
|
828 |
+
"grad_norm": 0.32151034474372864,
|
829 |
+
"learning_rate": 1.6366407048672135e-05,
|
830 |
+
"loss": 0.0086,
|
831 |
+
"step": 114
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.905511811023622,
|
835 |
+
"grad_norm": 0.557732343673706,
|
836 |
+
"learning_rate": 1.6300878435817115e-05,
|
837 |
+
"loss": 0.0064,
|
838 |
+
"step": 115
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 0.9133858267716536,
|
842 |
+
"grad_norm": 0.2238176167011261,
|
843 |
+
"learning_rate": 1.6234898018587336e-05,
|
844 |
+
"loss": 0.0065,
|
845 |
+
"step": 116
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 0.9212598425196851,
|
849 |
+
"grad_norm": 0.2980042099952698,
|
850 |
+
"learning_rate": 1.616847052810744e-05,
|
851 |
+
"loss": 0.0095,
|
852 |
+
"step": 117
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 0.9291338582677166,
|
856 |
+
"grad_norm": 0.1529705822467804,
|
857 |
+
"learning_rate": 1.6101600727559423e-05,
|
858 |
+
"loss": 0.0062,
|
859 |
+
"step": 118
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 0.937007874015748,
|
863 |
+
"grad_norm": 0.017149658873677254,
|
864 |
+
"learning_rate": 1.603429341184114e-05,
|
865 |
+
"loss": 0.0002,
|
866 |
+
"step": 119
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.9448818897637795,
|
870 |
+
"grad_norm": 0.4514746367931366,
|
871 |
+
"learning_rate": 1.596655340722244e-05,
|
872 |
+
"loss": 0.0067,
|
873 |
+
"step": 120
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.952755905511811,
|
877 |
+
"grad_norm": 0.11766134947538376,
|
878 |
+
"learning_rate": 1.5898385570999146e-05,
|
879 |
+
"loss": 0.0053,
|
880 |
+
"step": 121
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 0.9606299212598425,
|
884 |
+
"grad_norm": 0.4089784026145935,
|
885 |
+
"learning_rate": 1.5829794791144723e-05,
|
886 |
+
"loss": 0.0085,
|
887 |
+
"step": 122
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 0.968503937007874,
|
891 |
+
"grad_norm": 0.1353057473897934,
|
892 |
+
"learning_rate": 1.57607859859598e-05,
|
893 |
+
"loss": 0.0013,
|
894 |
+
"step": 123
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 0.9763779527559056,
|
898 |
+
"grad_norm": 0.6548481583595276,
|
899 |
+
"learning_rate": 1.5691364103719515e-05,
|
900 |
+
"loss": 0.0117,
|
901 |
+
"step": 124
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 0.984251968503937,
|
905 |
+
"grad_norm": 0.1571267992258072,
|
906 |
+
"learning_rate": 1.5621534122318682e-05,
|
907 |
+
"loss": 0.0049,
|
908 |
+
"step": 125
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.9921259842519685,
|
912 |
+
"grad_norm": 1.2177189588546753,
|
913 |
+
"learning_rate": 1.5551301048914863e-05,
|
914 |
+
"loss": 0.0161,
|
915 |
+
"step": 126
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 1.0,
|
919 |
+
"grad_norm": 0.414489209651947,
|
920 |
+
"learning_rate": 1.5480669919569313e-05,
|
921 |
+
"loss": 0.0181,
|
922 |
+
"step": 127
|
923 |
+
}
|
924 |
+
],
|
925 |
+
"logging_steps": 1,
|
926 |
+
"max_steps": 381,
|
927 |
+
"num_input_tokens_seen": 0,
|
928 |
+
"num_train_epochs": 3,
|
929 |
+
"save_steps": 127,
|
930 |
+
"stateful_callbacks": {
|
931 |
+
"TrainerControl": {
|
932 |
+
"args": {
|
933 |
+
"should_epoch_stop": false,
|
934 |
+
"should_evaluate": false,
|
935 |
+
"should_log": false,
|
936 |
+
"should_save": true,
|
937 |
+
"should_training_stop": false
|
938 |
+
},
|
939 |
+
"attributes": {}
|
940 |
+
}
|
941 |
+
},
|
942 |
+
"total_flos": 1.3087271069889331e+17,
|
943 |
+
"train_batch_size": 128,
|
944 |
+
"trial_name": null,
|
945 |
+
"trial_params": null
|
946 |
+
}
|
checkpoint-127/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:033fc2cc0303528d4e9ad523b3fd63b75e963b86dba301044379df1d98e6c394
|
3 |
+
size 10744
|
checkpoint-127/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-127/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-254/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-254/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-1.5B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151665
|
28 |
+
}
|
checkpoint-254/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
checkpoint-254/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step254
|
checkpoint-254/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-254/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3eedece3cb1bc71666f6a20e4c5916c10d3c11d652973d8a607631461886c5c
|
3 |
+
size 3552549728
|
checkpoint-254/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dcb161b22b2558dbf7e3f8c871050cec383d11a40423fab11f18d5e630639bf
|
3 |
+
size 14512
|
checkpoint-254/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d50af6aef769414a6f28fa1b1bc51ce707dc8ecd15474e03f99a2f10fde086be
|
3 |
+
size 14512
|
checkpoint-254/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997c6d2d08e07c59dc46077a3e8a02345edb321c7cf3b941c4dee43d635bb3ca
|
3 |
+
size 1064
|
checkpoint-254/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-254/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-254/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-254/trainer_state.json
ADDED
@@ -0,0 +1,1859 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.0,
|
5 |
+
"eval_steps": 43,
|
6 |
+
"global_step": 254,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.007874015748031496,
|
13 |
+
"grad_norm": 118.11203002929688,
|
14 |
+
"learning_rate": 2.0000000000000003e-06,
|
15 |
+
"loss": 4.6099,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.007874015748031496,
|
20 |
+
"eval_loss": 3.1001100540161133,
|
21 |
+
"eval_runtime": 5.3966,
|
22 |
+
"eval_samples_per_second": 30.204,
|
23 |
+
"eval_steps_per_second": 3.891,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.015748031496062992,
|
28 |
+
"grad_norm": 118.4310302734375,
|
29 |
+
"learning_rate": 4.000000000000001e-06,
|
30 |
+
"loss": 4.5857,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.023622047244094488,
|
35 |
+
"grad_norm": 103.37439727783203,
|
36 |
+
"learning_rate": 6e-06,
|
37 |
+
"loss": 4.3069,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.031496062992125984,
|
42 |
+
"grad_norm": 75.05075073242188,
|
43 |
+
"learning_rate": 8.000000000000001e-06,
|
44 |
+
"loss": 3.8754,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.03937007874015748,
|
49 |
+
"grad_norm": 50.459983825683594,
|
50 |
+
"learning_rate": 1e-05,
|
51 |
+
"loss": 3.2841,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.047244094488188976,
|
56 |
+
"grad_norm": 47.4603385925293,
|
57 |
+
"learning_rate": 1.2e-05,
|
58 |
+
"loss": 2.4285,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.05511811023622047,
|
63 |
+
"grad_norm": 32.362667083740234,
|
64 |
+
"learning_rate": 1.4e-05,
|
65 |
+
"loss": 1.8177,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.06299212598425197,
|
70 |
+
"grad_norm": 22.846933364868164,
|
71 |
+
"learning_rate": 1.6000000000000003e-05,
|
72 |
+
"loss": 1.1567,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.07086614173228346,
|
77 |
+
"grad_norm": 17.060213088989258,
|
78 |
+
"learning_rate": 1.8e-05,
|
79 |
+
"loss": 0.8257,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.07874015748031496,
|
84 |
+
"grad_norm": 14.415579795837402,
|
85 |
+
"learning_rate": 2e-05,
|
86 |
+
"loss": 0.4257,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.08661417322834646,
|
91 |
+
"grad_norm": 7.753712177276611,
|
92 |
+
"learning_rate": 1.999964147509006e-05,
|
93 |
+
"loss": 0.2976,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.09448818897637795,
|
98 |
+
"grad_norm": 26.883708953857422,
|
99 |
+
"learning_rate": 1.9998565926068253e-05,
|
100 |
+
"loss": 0.3365,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.10236220472440945,
|
105 |
+
"grad_norm": 10.675631523132324,
|
106 |
+
"learning_rate": 1.9996773430056806e-05,
|
107 |
+
"loss": 0.2161,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.11023622047244094,
|
112 |
+
"grad_norm": 6.670111179351807,
|
113 |
+
"learning_rate": 1.999426411558661e-05,
|
114 |
+
"loss": 0.1816,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.11811023622047244,
|
119 |
+
"grad_norm": 8.878239631652832,
|
120 |
+
"learning_rate": 1.9991038162588018e-05,
|
121 |
+
"loss": 0.1567,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.12598425196850394,
|
126 |
+
"grad_norm": 2.9917383193969727,
|
127 |
+
"learning_rate": 1.9987095802377933e-05,
|
128 |
+
"loss": 0.0813,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.13385826771653545,
|
133 |
+
"grad_norm": 1.0548763275146484,
|
134 |
+
"learning_rate": 1.9982437317643218e-05,
|
135 |
+
"loss": 0.0217,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.14173228346456693,
|
140 |
+
"grad_norm": 2.8778488636016846,
|
141 |
+
"learning_rate": 1.9977063042420438e-05,
|
142 |
+
"loss": 0.0618,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.14960629921259844,
|
147 |
+
"grad_norm": 0.9811734557151794,
|
148 |
+
"learning_rate": 1.99709733620719e-05,
|
149 |
+
"loss": 0.0175,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.15748031496062992,
|
154 |
+
"grad_norm": 0.7218202948570251,
|
155 |
+
"learning_rate": 1.996416871325803e-05,
|
156 |
+
"loss": 0.0302,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.16535433070866143,
|
161 |
+
"grad_norm": 1.2746995687484741,
|
162 |
+
"learning_rate": 1.995664958390604e-05,
|
163 |
+
"loss": 0.0453,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.1732283464566929,
|
168 |
+
"grad_norm": 0.9413469433784485,
|
169 |
+
"learning_rate": 1.9948416513174976e-05,
|
170 |
+
"loss": 0.0175,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.18110236220472442,
|
175 |
+
"grad_norm": 1.4161137342453003,
|
176 |
+
"learning_rate": 1.9939470091417012e-05,
|
177 |
+
"loss": 0.0277,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.1889763779527559,
|
182 |
+
"grad_norm": 2.2721235752105713,
|
183 |
+
"learning_rate": 1.992981096013517e-05,
|
184 |
+
"loss": 0.0589,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.1968503937007874,
|
189 |
+
"grad_norm": 1.143970251083374,
|
190 |
+
"learning_rate": 1.9919439811937283e-05,
|
191 |
+
"loss": 0.0182,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.2047244094488189,
|
196 |
+
"grad_norm": 0.8054028749465942,
|
197 |
+
"learning_rate": 1.9908357390486342e-05,
|
198 |
+
"loss": 0.0211,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.2125984251968504,
|
203 |
+
"grad_norm": 1.4449081420898438,
|
204 |
+
"learning_rate": 1.989656449044718e-05,
|
205 |
+
"loss": 0.0244,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.2204724409448819,
|
210 |
+
"grad_norm": 0.49216631054878235,
|
211 |
+
"learning_rate": 1.988406195742948e-05,
|
212 |
+
"loss": 0.005,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.2283464566929134,
|
217 |
+
"grad_norm": 0.9945647716522217,
|
218 |
+
"learning_rate": 1.987085068792715e-05,
|
219 |
+
"loss": 0.0373,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.23622047244094488,
|
224 |
+
"grad_norm": 1.1753748655319214,
|
225 |
+
"learning_rate": 1.9856931629254032e-05,
|
226 |
+
"loss": 0.0217,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.2440944881889764,
|
231 |
+
"grad_norm": 0.5960403680801392,
|
232 |
+
"learning_rate": 1.984230577947597e-05,
|
233 |
+
"loss": 0.0157,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.25196850393700787,
|
238 |
+
"grad_norm": 0.3657272160053253,
|
239 |
+
"learning_rate": 1.9826974187339267e-05,
|
240 |
+
"loss": 0.0082,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.25984251968503935,
|
245 |
+
"grad_norm": 1.1290266513824463,
|
246 |
+
"learning_rate": 1.981093795219546e-05,
|
247 |
+
"loss": 0.0236,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.2677165354330709,
|
252 |
+
"grad_norm": 1.673962116241455,
|
253 |
+
"learning_rate": 1.9794198223922496e-05,
|
254 |
+
"loss": 0.0182,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.2755905511811024,
|
259 |
+
"grad_norm": 0.540355384349823,
|
260 |
+
"learning_rate": 1.9776756202842297e-05,
|
261 |
+
"loss": 0.011,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.28346456692913385,
|
266 |
+
"grad_norm": 0.3380790054798126,
|
267 |
+
"learning_rate": 1.9758613139634662e-05,
|
268 |
+
"loss": 0.0048,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.29133858267716534,
|
273 |
+
"grad_norm": 1.886232852935791,
|
274 |
+
"learning_rate": 1.9739770335247616e-05,
|
275 |
+
"loss": 0.0157,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.2992125984251969,
|
280 |
+
"grad_norm": 2.140639305114746,
|
281 |
+
"learning_rate": 1.972022914080411e-05,
|
282 |
+
"loss": 0.0393,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.30708661417322836,
|
287 |
+
"grad_norm": 0.35308870673179626,
|
288 |
+
"learning_rate": 1.9699990957505136e-05,
|
289 |
+
"loss": 0.0074,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.31496062992125984,
|
294 |
+
"grad_norm": 0.3918301463127136,
|
295 |
+
"learning_rate": 1.9679057236529266e-05,
|
296 |
+
"loss": 0.0083,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.3228346456692913,
|
301 |
+
"grad_norm": 0.4406338632106781,
|
302 |
+
"learning_rate": 1.965742947892858e-05,
|
303 |
+
"loss": 0.0152,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.33070866141732286,
|
308 |
+
"grad_norm": 0.6819682121276855,
|
309 |
+
"learning_rate": 1.9635109235521057e-05,
|
310 |
+
"loss": 0.0091,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.33858267716535434,
|
315 |
+
"grad_norm": 0.6794927716255188,
|
316 |
+
"learning_rate": 1.961209810677934e-05,
|
317 |
+
"loss": 0.0071,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.33858267716535434,
|
322 |
+
"eval_loss": 0.3895845115184784,
|
323 |
+
"eval_runtime": 6.5602,
|
324 |
+
"eval_samples_per_second": 24.847,
|
325 |
+
"eval_steps_per_second": 3.201,
|
326 |
+
"step": 43
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.3464566929133858,
|
330 |
+
"grad_norm": 0.3874967694282532,
|
331 |
+
"learning_rate": 1.9588397742716004e-05,
|
332 |
+
"loss": 0.0089,
|
333 |
+
"step": 44
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.3543307086614173,
|
337 |
+
"grad_norm": 0.5577577352523804,
|
338 |
+
"learning_rate": 1.9564009842765225e-05,
|
339 |
+
"loss": 0.0098,
|
340 |
+
"step": 45
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.36220472440944884,
|
344 |
+
"grad_norm": 0.8152347207069397,
|
345 |
+
"learning_rate": 1.9538936155660934e-05,
|
346 |
+
"loss": 0.0118,
|
347 |
+
"step": 46
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.3700787401574803,
|
351 |
+
"grad_norm": 0.2971118688583374,
|
352 |
+
"learning_rate": 1.951317847931141e-05,
|
353 |
+
"loss": 0.0084,
|
354 |
+
"step": 47
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.3779527559055118,
|
358 |
+
"grad_norm": 1.0286651849746704,
|
359 |
+
"learning_rate": 1.9486738660670373e-05,
|
360 |
+
"loss": 0.0123,
|
361 |
+
"step": 48
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.3858267716535433,
|
365 |
+
"grad_norm": 0.5227222442626953,
|
366 |
+
"learning_rate": 1.945961859560454e-05,
|
367 |
+
"loss": 0.0144,
|
368 |
+
"step": 49
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.3937007874015748,
|
372 |
+
"grad_norm": 0.461935818195343,
|
373 |
+
"learning_rate": 1.943182022875769e-05,
|
374 |
+
"loss": 0.0119,
|
375 |
+
"step": 50
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.4015748031496063,
|
379 |
+
"grad_norm": 1.2550626993179321,
|
380 |
+
"learning_rate": 1.940334555341122e-05,
|
381 |
+
"loss": 0.013,
|
382 |
+
"step": 51
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 0.4094488188976378,
|
386 |
+
"grad_norm": 0.37549659609794617,
|
387 |
+
"learning_rate": 1.9374196611341212e-05,
|
388 |
+
"loss": 0.0181,
|
389 |
+
"step": 52
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.41732283464566927,
|
393 |
+
"grad_norm": 0.3444191515445709,
|
394 |
+
"learning_rate": 1.9344375492672024e-05,
|
395 |
+
"loss": 0.0111,
|
396 |
+
"step": 53
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.4251968503937008,
|
400 |
+
"grad_norm": 0.3489387333393097,
|
401 |
+
"learning_rate": 1.9313884335726443e-05,
|
402 |
+
"loss": 0.0111,
|
403 |
+
"step": 54
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.4330708661417323,
|
407 |
+
"grad_norm": 0.26080814003944397,
|
408 |
+
"learning_rate": 1.9282725326872324e-05,
|
409 |
+
"loss": 0.0091,
|
410 |
+
"step": 55
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.4409448818897638,
|
414 |
+
"grad_norm": 0.1390451341867447,
|
415 |
+
"learning_rate": 1.9250900700365837e-05,
|
416 |
+
"loss": 0.0033,
|
417 |
+
"step": 56
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.44881889763779526,
|
421 |
+
"grad_norm": 0.20499111711978912,
|
422 |
+
"learning_rate": 1.921841273819125e-05,
|
423 |
+
"loss": 0.0066,
|
424 |
+
"step": 57
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.4566929133858268,
|
428 |
+
"grad_norm": 2.185487747192383,
|
429 |
+
"learning_rate": 1.918526376989731e-05,
|
430 |
+
"loss": 0.0095,
|
431 |
+
"step": 58
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.4645669291338583,
|
435 |
+
"grad_norm": 0.23939816653728485,
|
436 |
+
"learning_rate": 1.9151456172430186e-05,
|
437 |
+
"loss": 0.0048,
|
438 |
+
"step": 59
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.47244094488188976,
|
442 |
+
"grad_norm": 0.41510018706321716,
|
443 |
+
"learning_rate": 1.911699236996305e-05,
|
444 |
+
"loss": 0.0077,
|
445 |
+
"step": 60
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.48031496062992124,
|
449 |
+
"grad_norm": 0.264318585395813,
|
450 |
+
"learning_rate": 1.9081874833722234e-05,
|
451 |
+
"loss": 0.0129,
|
452 |
+
"step": 61
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.4881889763779528,
|
456 |
+
"grad_norm": 1.0443968772888184,
|
457 |
+
"learning_rate": 1.9046106081810047e-05,
|
458 |
+
"loss": 0.0035,
|
459 |
+
"step": 62
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.49606299212598426,
|
463 |
+
"grad_norm": 0.2800132632255554,
|
464 |
+
"learning_rate": 1.900968867902419e-05,
|
465 |
+
"loss": 0.0057,
|
466 |
+
"step": 63
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.5039370078740157,
|
470 |
+
"grad_norm": 1.114960789680481,
|
471 |
+
"learning_rate": 1.8972625236673887e-05,
|
472 |
+
"loss": 0.0123,
|
473 |
+
"step": 64
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.5118110236220472,
|
477 |
+
"grad_norm": 0.5027065873146057,
|
478 |
+
"learning_rate": 1.8934918412392596e-05,
|
479 |
+
"loss": 0.0052,
|
480 |
+
"step": 65
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.5196850393700787,
|
484 |
+
"grad_norm": 0.5564169883728027,
|
485 |
+
"learning_rate": 1.8896570909947477e-05,
|
486 |
+
"loss": 0.0085,
|
487 |
+
"step": 66
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.5275590551181102,
|
491 |
+
"grad_norm": 0.7567198872566223,
|
492 |
+
"learning_rate": 1.8857585479045493e-05,
|
493 |
+
"loss": 0.0054,
|
494 |
+
"step": 67
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.5354330708661418,
|
498 |
+
"grad_norm": 0.13573969900608063,
|
499 |
+
"learning_rate": 1.8817964915136277e-05,
|
500 |
+
"loss": 0.0008,
|
501 |
+
"step": 68
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.5433070866141733,
|
505 |
+
"grad_norm": 0.2704390287399292,
|
506 |
+
"learning_rate": 1.8777712059211643e-05,
|
507 |
+
"loss": 0.0078,
|
508 |
+
"step": 69
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.5511811023622047,
|
512 |
+
"grad_norm": 0.6014392971992493,
|
513 |
+
"learning_rate": 1.8736829797601903e-05,
|
514 |
+
"loss": 0.0059,
|
515 |
+
"step": 70
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.5590551181102362,
|
519 |
+
"grad_norm": 0.5487034916877747,
|
520 |
+
"learning_rate": 1.8695321061768886e-05,
|
521 |
+
"loss": 0.0097,
|
522 |
+
"step": 71
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.5669291338582677,
|
526 |
+
"grad_norm": 0.6670834422111511,
|
527 |
+
"learning_rate": 1.8653188828095754e-05,
|
528 |
+
"loss": 0.011,
|
529 |
+
"step": 72
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.5748031496062992,
|
533 |
+
"grad_norm": 0.1795203685760498,
|
534 |
+
"learning_rate": 1.8610436117673557e-05,
|
535 |
+
"loss": 0.0067,
|
536 |
+
"step": 73
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.5826771653543307,
|
540 |
+
"grad_norm": 1.768436074256897,
|
541 |
+
"learning_rate": 1.8567065996084628e-05,
|
542 |
+
"loss": 0.0096,
|
543 |
+
"step": 74
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.5905511811023622,
|
547 |
+
"grad_norm": 0.26233312487602234,
|
548 |
+
"learning_rate": 1.8523081573182754e-05,
|
549 |
+
"loss": 0.0124,
|
550 |
+
"step": 75
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.5984251968503937,
|
554 |
+
"grad_norm": 0.3775719404220581,
|
555 |
+
"learning_rate": 1.847848600287019e-05,
|
556 |
+
"loss": 0.0052,
|
557 |
+
"step": 76
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.6062992125984252,
|
561 |
+
"grad_norm": 1.0016565322875977,
|
562 |
+
"learning_rate": 1.8433282482871497e-05,
|
563 |
+
"loss": 0.0058,
|
564 |
+
"step": 77
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.6141732283464567,
|
568 |
+
"grad_norm": 0.20153792202472687,
|
569 |
+
"learning_rate": 1.8387474254504265e-05,
|
570 |
+
"loss": 0.0056,
|
571 |
+
"step": 78
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.6220472440944882,
|
575 |
+
"grad_norm": 0.5119822025299072,
|
576 |
+
"learning_rate": 1.8341064602446686e-05,
|
577 |
+
"loss": 0.0079,
|
578 |
+
"step": 79
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.6299212598425197,
|
582 |
+
"grad_norm": 1.5781004428863525,
|
583 |
+
"learning_rate": 1.829405685450202e-05,
|
584 |
+
"loss": 0.008,
|
585 |
+
"step": 80
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.6377952755905512,
|
589 |
+
"grad_norm": 0.23826757073402405,
|
590 |
+
"learning_rate": 1.824645438135999e-05,
|
591 |
+
"loss": 0.0041,
|
592 |
+
"step": 81
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 0.6456692913385826,
|
596 |
+
"grad_norm": 0.6386727690696716,
|
597 |
+
"learning_rate": 1.8198260596355077e-05,
|
598 |
+
"loss": 0.0188,
|
599 |
+
"step": 82
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.6535433070866141,
|
603 |
+
"grad_norm": 0.9503199458122253,
|
604 |
+
"learning_rate": 1.814947895522176e-05,
|
605 |
+
"loss": 0.008,
|
606 |
+
"step": 83
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.6614173228346457,
|
610 |
+
"grad_norm": 0.2040701061487198,
|
611 |
+
"learning_rate": 1.8100112955846746e-05,
|
612 |
+
"loss": 0.0038,
|
613 |
+
"step": 84
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.6692913385826772,
|
617 |
+
"grad_norm": 0.3660199046134949,
|
618 |
+
"learning_rate": 1.805016613801813e-05,
|
619 |
+
"loss": 0.0148,
|
620 |
+
"step": 85
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.6771653543307087,
|
624 |
+
"grad_norm": 1.0502821207046509,
|
625 |
+
"learning_rate": 1.7999642083171576e-05,
|
626 |
+
"loss": 0.0098,
|
627 |
+
"step": 86
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.6771653543307087,
|
631 |
+
"eval_loss": 0.3526817262172699,
|
632 |
+
"eval_runtime": 6.6167,
|
633 |
+
"eval_samples_per_second": 24.635,
|
634 |
+
"eval_steps_per_second": 3.174,
|
635 |
+
"step": 86
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.6850393700787402,
|
639 |
+
"grad_norm": 0.13735969364643097,
|
640 |
+
"learning_rate": 1.7948544414133534e-05,
|
641 |
+
"loss": 0.0022,
|
642 |
+
"step": 87
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 0.6929133858267716,
|
646 |
+
"grad_norm": 0.6425012946128845,
|
647 |
+
"learning_rate": 1.7896876794861443e-05,
|
648 |
+
"loss": 0.0086,
|
649 |
+
"step": 88
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.7007874015748031,
|
653 |
+
"grad_norm": 0.7540380954742432,
|
654 |
+
"learning_rate": 1.7844642930181008e-05,
|
655 |
+
"loss": 0.0062,
|
656 |
+
"step": 89
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.7086614173228346,
|
660 |
+
"grad_norm": 0.6727365255355835,
|
661 |
+
"learning_rate": 1.779184656552056e-05,
|
662 |
+
"loss": 0.0027,
|
663 |
+
"step": 90
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.7165354330708661,
|
667 |
+
"grad_norm": 0.14059337973594666,
|
668 |
+
"learning_rate": 1.773849148664247e-05,
|
669 |
+
"loss": 0.0056,
|
670 |
+
"step": 91
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 0.7244094488188977,
|
674 |
+
"grad_norm": 0.33292093873023987,
|
675 |
+
"learning_rate": 1.7684581519371714e-05,
|
676 |
+
"loss": 0.0047,
|
677 |
+
"step": 92
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 0.7322834645669292,
|
681 |
+
"grad_norm": 0.3809877932071686,
|
682 |
+
"learning_rate": 1.7630120529321518e-05,
|
683 |
+
"loss": 0.0139,
|
684 |
+
"step": 93
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 0.7401574803149606,
|
688 |
+
"grad_norm": 1.729589819908142,
|
689 |
+
"learning_rate": 1.7575112421616203e-05,
|
690 |
+
"loss": 0.0128,
|
691 |
+
"step": 94
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.7480314960629921,
|
695 |
+
"grad_norm": 0.18192608654499054,
|
696 |
+
"learning_rate": 1.751956114061113e-05,
|
697 |
+
"loss": 0.0025,
|
698 |
+
"step": 95
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.7559055118110236,
|
702 |
+
"grad_norm": 1.0333118438720703,
|
703 |
+
"learning_rate": 1.7463470669609907e-05,
|
704 |
+
"loss": 0.006,
|
705 |
+
"step": 96
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.7637795275590551,
|
709 |
+
"grad_norm": 0.7247685194015503,
|
710 |
+
"learning_rate": 1.7406845030578747e-05,
|
711 |
+
"loss": 0.0073,
|
712 |
+
"step": 97
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.7716535433070866,
|
716 |
+
"grad_norm": 0.06979379802942276,
|
717 |
+
"learning_rate": 1.734968828385808e-05,
|
718 |
+
"loss": 0.0005,
|
719 |
+
"step": 98
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.7795275590551181,
|
723 |
+
"grad_norm": 0.5137119293212891,
|
724 |
+
"learning_rate": 1.729200452787139e-05,
|
725 |
+
"loss": 0.0082,
|
726 |
+
"step": 99
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"epoch": 0.7874015748031497,
|
730 |
+
"grad_norm": 0.4704137146472931,
|
731 |
+
"learning_rate": 1.7233797898831376e-05,
|
732 |
+
"loss": 0.005,
|
733 |
+
"step": 100
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.7952755905511811,
|
737 |
+
"grad_norm": 0.28564465045928955,
|
738 |
+
"learning_rate": 1.717507257044331e-05,
|
739 |
+
"loss": 0.0052,
|
740 |
+
"step": 101
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.8031496062992126,
|
744 |
+
"grad_norm": 0.17685537040233612,
|
745 |
+
"learning_rate": 1.711583275360582e-05,
|
746 |
+
"loss": 0.0024,
|
747 |
+
"step": 102
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.8110236220472441,
|
751 |
+
"grad_norm": 0.45714935660362244,
|
752 |
+
"learning_rate": 1.7056082696108896e-05,
|
753 |
+
"loss": 0.0072,
|
754 |
+
"step": 103
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.8188976377952756,
|
758 |
+
"grad_norm": 0.4373086988925934,
|
759 |
+
"learning_rate": 1.699582668232934e-05,
|
760 |
+
"loss": 0.0051,
|
761 |
+
"step": 104
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.8267716535433071,
|
765 |
+
"grad_norm": 0.8478983640670776,
|
766 |
+
"learning_rate": 1.6935069032923525e-05,
|
767 |
+
"loss": 0.022,
|
768 |
+
"step": 105
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 0.8346456692913385,
|
772 |
+
"grad_norm": 0.16181086003780365,
|
773 |
+
"learning_rate": 1.6873814104517617e-05,
|
774 |
+
"loss": 0.0058,
|
775 |
+
"step": 106
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.84251968503937,
|
779 |
+
"grad_norm": 0.09503592550754547,
|
780 |
+
"learning_rate": 1.6812066289395157e-05,
|
781 |
+
"loss": 0.0009,
|
782 |
+
"step": 107
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.8503937007874016,
|
786 |
+
"grad_norm": 0.7462632060050964,
|
787 |
+
"learning_rate": 1.6749830015182106e-05,
|
788 |
+
"loss": 0.0044,
|
789 |
+
"step": 108
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.8582677165354331,
|
793 |
+
"grad_norm": 0.07221701741218567,
|
794 |
+
"learning_rate": 1.6687109744529394e-05,
|
795 |
+
"loss": 0.0015,
|
796 |
+
"step": 109
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 0.8661417322834646,
|
800 |
+
"grad_norm": 0.08999036252498627,
|
801 |
+
"learning_rate": 1.6623909974792888e-05,
|
802 |
+
"loss": 0.0023,
|
803 |
+
"step": 110
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 0.8740157480314961,
|
807 |
+
"grad_norm": 0.42536938190460205,
|
808 |
+
"learning_rate": 1.656023523771095e-05,
|
809 |
+
"loss": 0.005,
|
810 |
+
"step": 111
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 0.8818897637795275,
|
814 |
+
"grad_norm": 0.7885191440582275,
|
815 |
+
"learning_rate": 1.6496090099079452e-05,
|
816 |
+
"loss": 0.0103,
|
817 |
+
"step": 112
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 0.889763779527559,
|
821 |
+
"grad_norm": 0.16610018908977509,
|
822 |
+
"learning_rate": 1.64314791584244e-05,
|
823 |
+
"loss": 0.006,
|
824 |
+
"step": 113
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.8976377952755905,
|
828 |
+
"grad_norm": 0.32151034474372864,
|
829 |
+
"learning_rate": 1.6366407048672135e-05,
|
830 |
+
"loss": 0.0086,
|
831 |
+
"step": 114
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.905511811023622,
|
835 |
+
"grad_norm": 0.557732343673706,
|
836 |
+
"learning_rate": 1.6300878435817115e-05,
|
837 |
+
"loss": 0.0064,
|
838 |
+
"step": 115
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 0.9133858267716536,
|
842 |
+
"grad_norm": 0.2238176167011261,
|
843 |
+
"learning_rate": 1.6234898018587336e-05,
|
844 |
+
"loss": 0.0065,
|
845 |
+
"step": 116
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 0.9212598425196851,
|
849 |
+
"grad_norm": 0.2980042099952698,
|
850 |
+
"learning_rate": 1.616847052810744e-05,
|
851 |
+
"loss": 0.0095,
|
852 |
+
"step": 117
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 0.9291338582677166,
|
856 |
+
"grad_norm": 0.1529705822467804,
|
857 |
+
"learning_rate": 1.6101600727559423e-05,
|
858 |
+
"loss": 0.0062,
|
859 |
+
"step": 118
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 0.937007874015748,
|
863 |
+
"grad_norm": 0.017149658873677254,
|
864 |
+
"learning_rate": 1.603429341184114e-05,
|
865 |
+
"loss": 0.0002,
|
866 |
+
"step": 119
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.9448818897637795,
|
870 |
+
"grad_norm": 0.4514746367931366,
|
871 |
+
"learning_rate": 1.596655340722244e-05,
|
872 |
+
"loss": 0.0067,
|
873 |
+
"step": 120
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.952755905511811,
|
877 |
+
"grad_norm": 0.11766134947538376,
|
878 |
+
"learning_rate": 1.5898385570999146e-05,
|
879 |
+
"loss": 0.0053,
|
880 |
+
"step": 121
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 0.9606299212598425,
|
884 |
+
"grad_norm": 0.4089784026145935,
|
885 |
+
"learning_rate": 1.5829794791144723e-05,
|
886 |
+
"loss": 0.0085,
|
887 |
+
"step": 122
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 0.968503937007874,
|
891 |
+
"grad_norm": 0.1353057473897934,
|
892 |
+
"learning_rate": 1.57607859859598e-05,
|
893 |
+
"loss": 0.0013,
|
894 |
+
"step": 123
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 0.9763779527559056,
|
898 |
+
"grad_norm": 0.6548481583595276,
|
899 |
+
"learning_rate": 1.5691364103719515e-05,
|
900 |
+
"loss": 0.0117,
|
901 |
+
"step": 124
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 0.984251968503937,
|
905 |
+
"grad_norm": 0.1571267992258072,
|
906 |
+
"learning_rate": 1.5621534122318682e-05,
|
907 |
+
"loss": 0.0049,
|
908 |
+
"step": 125
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.9921259842519685,
|
912 |
+
"grad_norm": 1.2177189588546753,
|
913 |
+
"learning_rate": 1.5551301048914863e-05,
|
914 |
+
"loss": 0.0161,
|
915 |
+
"step": 126
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 1.0,
|
919 |
+
"grad_norm": 0.414489209651947,
|
920 |
+
"learning_rate": 1.5480669919569313e-05,
|
921 |
+
"loss": 0.0181,
|
922 |
+
"step": 127
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 1.0078740157480315,
|
926 |
+
"grad_norm": 0.10985995829105377,
|
927 |
+
"learning_rate": 1.54096457988859e-05,
|
928 |
+
"loss": 0.0049,
|
929 |
+
"step": 128
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 1.015748031496063,
|
933 |
+
"grad_norm": 0.12780147790908813,
|
934 |
+
"learning_rate": 1.533823377964791e-05,
|
935 |
+
"loss": 0.0026,
|
936 |
+
"step": 129
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 1.015748031496063,
|
940 |
+
"eval_loss": 0.33064374327659607,
|
941 |
+
"eval_runtime": 6.9286,
|
942 |
+
"eval_samples_per_second": 23.526,
|
943 |
+
"eval_steps_per_second": 3.031,
|
944 |
+
"step": 129
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 1.0236220472440944,
|
948 |
+
"grad_norm": 0.5142458081245422,
|
949 |
+
"learning_rate": 1.52664389824529e-05,
|
950 |
+
"loss": 0.0082,
|
951 |
+
"step": 130
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 1.031496062992126,
|
955 |
+
"grad_norm": 0.15617145597934723,
|
956 |
+
"learning_rate": 1.5194266555345505e-05,
|
957 |
+
"loss": 0.0016,
|
958 |
+
"step": 131
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"epoch": 1.0393700787401574,
|
962 |
+
"grad_norm": 0.5782387852668762,
|
963 |
+
"learning_rate": 1.5121721673448319e-05,
|
964 |
+
"loss": 0.0117,
|
965 |
+
"step": 132
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 1.047244094488189,
|
969 |
+
"grad_norm": 0.08414836972951889,
|
970 |
+
"learning_rate": 1.5048809538590789e-05,
|
971 |
+
"loss": 0.0021,
|
972 |
+
"step": 133
|
973 |
+
},
|
974 |
+
{
|
975 |
+
"epoch": 1.0551181102362204,
|
976 |
+
"grad_norm": 0.28253939747810364,
|
977 |
+
"learning_rate": 1.4975535378936228e-05,
|
978 |
+
"loss": 0.0055,
|
979 |
+
"step": 134
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 1.0629921259842519,
|
983 |
+
"grad_norm": 0.47917842864990234,
|
984 |
+
"learning_rate": 1.490190444860694e-05,
|
985 |
+
"loss": 0.0046,
|
986 |
+
"step": 135
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 1.0708661417322836,
|
990 |
+
"grad_norm": 0.1895662248134613,
|
991 |
+
"learning_rate": 1.482792202730745e-05,
|
992 |
+
"loss": 0.006,
|
993 |
+
"step": 136
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 1.078740157480315,
|
997 |
+
"grad_norm": 0.13722768425941467,
|
998 |
+
"learning_rate": 1.475359341994595e-05,
|
999 |
+
"loss": 0.0031,
|
1000 |
+
"step": 137
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 1.0866141732283465,
|
1004 |
+
"grad_norm": 0.10731153190135956,
|
1005 |
+
"learning_rate": 1.4678923956253894e-05,
|
1006 |
+
"loss": 0.0005,
|
1007 |
+
"step": 138
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"epoch": 1.094488188976378,
|
1011 |
+
"grad_norm": 0.12261265516281128,
|
1012 |
+
"learning_rate": 1.460391899040383e-05,
|
1013 |
+
"loss": 0.0031,
|
1014 |
+
"step": 139
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 1.1023622047244095,
|
1018 |
+
"grad_norm": 0.0038245893083512783,
|
1019 |
+
"learning_rate": 1.4528583900625481e-05,
|
1020 |
+
"loss": 0.0,
|
1021 |
+
"step": 140
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 1.110236220472441,
|
1025 |
+
"grad_norm": 0.28762558102607727,
|
1026 |
+
"learning_rate": 1.4452924088820101e-05,
|
1027 |
+
"loss": 0.004,
|
1028 |
+
"step": 141
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 1.1181102362204725,
|
1032 |
+
"grad_norm": 0.17267552018165588,
|
1033 |
+
"learning_rate": 1.4376944980173138e-05,
|
1034 |
+
"loss": 0.0002,
|
1035 |
+
"step": 142
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 1.125984251968504,
|
1039 |
+
"grad_norm": 0.12727122008800507,
|
1040 |
+
"learning_rate": 1.4300652022765207e-05,
|
1041 |
+
"loss": 0.0029,
|
1042 |
+
"step": 143
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 1.1338582677165354,
|
1046 |
+
"grad_norm": 0.25049135088920593,
|
1047 |
+
"learning_rate": 1.4224050687181442e-05,
|
1048 |
+
"loss": 0.0108,
|
1049 |
+
"step": 144
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 1.141732283464567,
|
1053 |
+
"grad_norm": 0.16092728078365326,
|
1054 |
+
"learning_rate": 1.4147146466119235e-05,
|
1055 |
+
"loss": 0.0024,
|
1056 |
+
"step": 145
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 1.1496062992125984,
|
1060 |
+
"grad_norm": 0.13642658293247223,
|
1061 |
+
"learning_rate": 1.406994487399437e-05,
|
1062 |
+
"loss": 0.0037,
|
1063 |
+
"step": 146
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"epoch": 1.1574803149606299,
|
1067 |
+
"grad_norm": 0.9029403328895569,
|
1068 |
+
"learning_rate": 1.3992451446545624e-05,
|
1069 |
+
"loss": 0.0034,
|
1070 |
+
"step": 147
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 1.1653543307086613,
|
1074 |
+
"grad_norm": 0.19518424570560455,
|
1075 |
+
"learning_rate": 1.3914671740437811e-05,
|
1076 |
+
"loss": 0.0057,
|
1077 |
+
"step": 148
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 1.1732283464566928,
|
1081 |
+
"grad_norm": 0.12140502035617828,
|
1082 |
+
"learning_rate": 1.3836611332863356e-05,
|
1083 |
+
"loss": 0.0041,
|
1084 |
+
"step": 149
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"epoch": 1.1811023622047245,
|
1088 |
+
"grad_norm": 0.5148038864135742,
|
1089 |
+
"learning_rate": 1.3758275821142382e-05,
|
1090 |
+
"loss": 0.0026,
|
1091 |
+
"step": 150
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"epoch": 1.188976377952756,
|
1095 |
+
"grad_norm": 1.828904390335083,
|
1096 |
+
"learning_rate": 1.3679670822321347e-05,
|
1097 |
+
"loss": 0.0024,
|
1098 |
+
"step": 151
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 1.1968503937007875,
|
1102 |
+
"grad_norm": 0.3571717143058777,
|
1103 |
+
"learning_rate": 1.3600801972770272e-05,
|
1104 |
+
"loss": 0.0106,
|
1105 |
+
"step": 152
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"epoch": 1.204724409448819,
|
1109 |
+
"grad_norm": 0.051027003675699234,
|
1110 |
+
"learning_rate": 1.3521674927778594e-05,
|
1111 |
+
"loss": 0.0003,
|
1112 |
+
"step": 153
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 1.2125984251968505,
|
1116 |
+
"grad_norm": 0.6490982174873352,
|
1117 |
+
"learning_rate": 1.3442295361149651e-05,
|
1118 |
+
"loss": 0.0035,
|
1119 |
+
"step": 154
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 1.220472440944882,
|
1123 |
+
"grad_norm": 0.08408445864915848,
|
1124 |
+
"learning_rate": 1.336266896479384e-05,
|
1125 |
+
"loss": 0.0027,
|
1126 |
+
"step": 155
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 1.2283464566929134,
|
1130 |
+
"grad_norm": 0.09666562080383301,
|
1131 |
+
"learning_rate": 1.328280144832047e-05,
|
1132 |
+
"loss": 0.0019,
|
1133 |
+
"step": 156
|
1134 |
+
},
|
1135 |
+
{
|
1136 |
+
"epoch": 1.236220472440945,
|
1137 |
+
"grad_norm": 0.03880690038204193,
|
1138 |
+
"learning_rate": 1.3202698538628376e-05,
|
1139 |
+
"loss": 0.0003,
|
1140 |
+
"step": 157
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"epoch": 1.2440944881889764,
|
1144 |
+
"grad_norm": 0.11940775066614151,
|
1145 |
+
"learning_rate": 1.3122365979495259e-05,
|
1146 |
+
"loss": 0.0024,
|
1147 |
+
"step": 158
|
1148 |
+
},
|
1149 |
+
{
|
1150 |
+
"epoch": 1.2519685039370079,
|
1151 |
+
"grad_norm": 0.1442880481481552,
|
1152 |
+
"learning_rate": 1.3041809531165819e-05,
|
1153 |
+
"loss": 0.0015,
|
1154 |
+
"step": 159
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 1.2598425196850394,
|
1158 |
+
"grad_norm": 0.1961939036846161,
|
1159 |
+
"learning_rate": 1.2961034969938732e-05,
|
1160 |
+
"loss": 0.0056,
|
1161 |
+
"step": 160
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 1.2677165354330708,
|
1165 |
+
"grad_norm": 0.26947638392448425,
|
1166 |
+
"learning_rate": 1.288004808775246e-05,
|
1167 |
+
"loss": 0.0028,
|
1168 |
+
"step": 161
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 1.2755905511811023,
|
1172 |
+
"grad_norm": 0.5154056549072266,
|
1173 |
+
"learning_rate": 1.2798854691769927e-05,
|
1174 |
+
"loss": 0.0037,
|
1175 |
+
"step": 162
|
1176 |
+
},
|
1177 |
+
{
|
1178 |
+
"epoch": 1.2834645669291338,
|
1179 |
+
"grad_norm": 0.4292369782924652,
|
1180 |
+
"learning_rate": 1.2717460603962132e-05,
|
1181 |
+
"loss": 0.0029,
|
1182 |
+
"step": 163
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"epoch": 1.2913385826771653,
|
1186 |
+
"grad_norm": 0.19139212369918823,
|
1187 |
+
"learning_rate": 1.2635871660690677e-05,
|
1188 |
+
"loss": 0.0061,
|
1189 |
+
"step": 164
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 1.2992125984251968,
|
1193 |
+
"grad_norm": 0.19960306584835052,
|
1194 |
+
"learning_rate": 1.2554093712289267e-05,
|
1195 |
+
"loss": 0.005,
|
1196 |
+
"step": 165
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 1.3070866141732282,
|
1200 |
+
"grad_norm": 0.4523830711841583,
|
1201 |
+
"learning_rate": 1.2472132622644222e-05,
|
1202 |
+
"loss": 0.0065,
|
1203 |
+
"step": 166
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.3149606299212597,
|
1207 |
+
"grad_norm": 0.49343299865722656,
|
1208 |
+
"learning_rate": 1.2389994268773995e-05,
|
1209 |
+
"loss": 0.0061,
|
1210 |
+
"step": 167
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 1.3228346456692912,
|
1214 |
+
"grad_norm": 0.01938088797032833,
|
1215 |
+
"learning_rate": 1.2307684540407775e-05,
|
1216 |
+
"loss": 0.0001,
|
1217 |
+
"step": 168
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"epoch": 1.330708661417323,
|
1221 |
+
"grad_norm": 0.3082112669944763,
|
1222 |
+
"learning_rate": 1.2225209339563144e-05,
|
1223 |
+
"loss": 0.0053,
|
1224 |
+
"step": 169
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 1.3385826771653544,
|
1228 |
+
"grad_norm": 0.01982509344816208,
|
1229 |
+
"learning_rate": 1.2142574580122903e-05,
|
1230 |
+
"loss": 0.0001,
|
1231 |
+
"step": 170
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"epoch": 1.3464566929133859,
|
1235 |
+
"grad_norm": 0.12388588488101959,
|
1236 |
+
"learning_rate": 1.2059786187410984e-05,
|
1237 |
+
"loss": 0.0049,
|
1238 |
+
"step": 171
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 1.3543307086614174,
|
1242 |
+
"grad_norm": 0.43759095668792725,
|
1243 |
+
"learning_rate": 1.1976850097767598e-05,
|
1244 |
+
"loss": 0.0128,
|
1245 |
+
"step": 172
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 1.3543307086614174,
|
1249 |
+
"eval_loss": 0.3166251480579376,
|
1250 |
+
"eval_runtime": 6.9515,
|
1251 |
+
"eval_samples_per_second": 23.448,
|
1252 |
+
"eval_steps_per_second": 3.021,
|
1253 |
+
"step": 172
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 1.3622047244094488,
|
1257 |
+
"grad_norm": 0.46561670303344727,
|
1258 |
+
"learning_rate": 1.1893772258123554e-05,
|
1259 |
+
"loss": 0.008,
|
1260 |
+
"step": 173
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 1.3700787401574803,
|
1264 |
+
"grad_norm": 0.16612188518047333,
|
1265 |
+
"learning_rate": 1.1810558625573856e-05,
|
1266 |
+
"loss": 0.0024,
|
1267 |
+
"step": 174
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 1.3779527559055118,
|
1271 |
+
"grad_norm": 0.13628093898296356,
|
1272 |
+
"learning_rate": 1.1727215166950519e-05,
|
1273 |
+
"loss": 0.0045,
|
1274 |
+
"step": 175
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 1.3858267716535433,
|
1278 |
+
"grad_norm": 0.565229058265686,
|
1279 |
+
"learning_rate": 1.1643747858394743e-05,
|
1280 |
+
"loss": 0.0103,
|
1281 |
+
"step": 176
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 1.3937007874015748,
|
1285 |
+
"grad_norm": 0.14550763368606567,
|
1286 |
+
"learning_rate": 1.156016268492839e-05,
|
1287 |
+
"loss": 0.0028,
|
1288 |
+
"step": 177
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 1.4015748031496063,
|
1292 |
+
"grad_norm": 0.12460129708051682,
|
1293 |
+
"learning_rate": 1.1476465640024814e-05,
|
1294 |
+
"loss": 0.0031,
|
1295 |
+
"step": 178
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 1.4094488188976377,
|
1299 |
+
"grad_norm": 0.19089221954345703,
|
1300 |
+
"learning_rate": 1.1392662725179114e-05,
|
1301 |
+
"loss": 0.0035,
|
1302 |
+
"step": 179
|
1303 |
+
},
|
1304 |
+
{
|
1305 |
+
"epoch": 1.4173228346456692,
|
1306 |
+
"grad_norm": 0.6106573343276978,
|
1307 |
+
"learning_rate": 1.1308759949477786e-05,
|
1308 |
+
"loss": 0.0088,
|
1309 |
+
"step": 180
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"epoch": 1.425196850393701,
|
1313 |
+
"grad_norm": 0.20053207874298096,
|
1314 |
+
"learning_rate": 1.1224763329167859e-05,
|
1315 |
+
"loss": 0.0033,
|
1316 |
+
"step": 181
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 1.4330708661417324,
|
1320 |
+
"grad_norm": 0.1984691321849823,
|
1321 |
+
"learning_rate": 1.1140678887225468e-05,
|
1322 |
+
"loss": 0.0051,
|
1323 |
+
"step": 182
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 1.4409448818897639,
|
1327 |
+
"grad_norm": 0.19264858961105347,
|
1328 |
+
"learning_rate": 1.1056512652924014e-05,
|
1329 |
+
"loss": 0.0046,
|
1330 |
+
"step": 183
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 1.4488188976377954,
|
1334 |
+
"grad_norm": 0.10979076474905014,
|
1335 |
+
"learning_rate": 1.0972270661401812e-05,
|
1336 |
+
"loss": 0.0031,
|
1337 |
+
"step": 184
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 1.4566929133858268,
|
1341 |
+
"grad_norm": 0.1744084656238556,
|
1342 |
+
"learning_rate": 1.0887958953229349e-05,
|
1343 |
+
"loss": 0.0024,
|
1344 |
+
"step": 185
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 1.4645669291338583,
|
1348 |
+
"grad_norm": 0.20646224915981293,
|
1349 |
+
"learning_rate": 1.0803583573976137e-05,
|
1350 |
+
"loss": 0.008,
|
1351 |
+
"step": 186
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"epoch": 1.4724409448818898,
|
1355 |
+
"grad_norm": 0.14391584694385529,
|
1356 |
+
"learning_rate": 1.0719150573777226e-05,
|
1357 |
+
"loss": 0.004,
|
1358 |
+
"step": 187
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 1.4803149606299213,
|
1362 |
+
"grad_norm": 0.36887863278388977,
|
1363 |
+
"learning_rate": 1.0634666006899375e-05,
|
1364 |
+
"loss": 0.0074,
|
1365 |
+
"step": 188
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 1.4881889763779528,
|
1369 |
+
"grad_norm": 0.21352627873420715,
|
1370 |
+
"learning_rate": 1.055013593130693e-05,
|
1371 |
+
"loss": 0.0082,
|
1372 |
+
"step": 189
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 1.4960629921259843,
|
1376 |
+
"grad_norm": 0.22443020343780518,
|
1377 |
+
"learning_rate": 1.046556640822744e-05,
|
1378 |
+
"loss": 0.0087,
|
1379 |
+
"step": 190
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 1.5039370078740157,
|
1383 |
+
"grad_norm": 0.4243764281272888,
|
1384 |
+
"learning_rate": 1.0380963501717034e-05,
|
1385 |
+
"loss": 0.0068,
|
1386 |
+
"step": 191
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 1.5118110236220472,
|
1390 |
+
"grad_norm": 0.17558562755584717,
|
1391 |
+
"learning_rate": 1.0296333278225599e-05,
|
1392 |
+
"loss": 0.0054,
|
1393 |
+
"step": 192
|
1394 |
+
},
|
1395 |
+
{
|
1396 |
+
"epoch": 1.5196850393700787,
|
1397 |
+
"grad_norm": 0.14842620491981506,
|
1398 |
+
"learning_rate": 1.0211681806161787e-05,
|
1399 |
+
"loss": 0.0031,
|
1400 |
+
"step": 193
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 1.5275590551181102,
|
1404 |
+
"grad_norm": 0.09316081553697586,
|
1405 |
+
"learning_rate": 1.0127015155457875e-05,
|
1406 |
+
"loss": 0.0013,
|
1407 |
+
"step": 194
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 1.5354330708661417,
|
1411 |
+
"grad_norm": 0.19795025885105133,
|
1412 |
+
"learning_rate": 1.0042339397134528e-05,
|
1413 |
+
"loss": 0.0051,
|
1414 |
+
"step": 195
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"epoch": 1.5433070866141732,
|
1418 |
+
"grad_norm": 0.21606990694999695,
|
1419 |
+
"learning_rate": 9.957660602865477e-06,
|
1420 |
+
"loss": 0.0041,
|
1421 |
+
"step": 196
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 1.5511811023622046,
|
1425 |
+
"grad_norm": 0.18036173284053802,
|
1426 |
+
"learning_rate": 9.872984844542128e-06,
|
1427 |
+
"loss": 0.0037,
|
1428 |
+
"step": 197
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 1.5590551181102361,
|
1432 |
+
"grad_norm": 0.18953870236873627,
|
1433 |
+
"learning_rate": 9.788318193838218e-06,
|
1434 |
+
"loss": 0.0041,
|
1435 |
+
"step": 198
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 1.5669291338582676,
|
1439 |
+
"grad_norm": 0.12346503138542175,
|
1440 |
+
"learning_rate": 9.703666721774403e-06,
|
1441 |
+
"loss": 0.0035,
|
1442 |
+
"step": 199
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 1.574803149606299,
|
1446 |
+
"grad_norm": 0.4576225280761719,
|
1447 |
+
"learning_rate": 9.619036498282968e-06,
|
1448 |
+
"loss": 0.0041,
|
1449 |
+
"step": 200
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 1.5826771653543306,
|
1453 |
+
"grad_norm": 0.10333681106567383,
|
1454 |
+
"learning_rate": 9.534433591772562e-06,
|
1455 |
+
"loss": 0.0011,
|
1456 |
+
"step": 201
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 1.590551181102362,
|
1460 |
+
"grad_norm": 0.19167865812778473,
|
1461 |
+
"learning_rate": 9.449864068693072e-06,
|
1462 |
+
"loss": 0.0062,
|
1463 |
+
"step": 202
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 1.5984251968503937,
|
1467 |
+
"grad_norm": 0.2258184254169464,
|
1468 |
+
"learning_rate": 9.365333993100628e-06,
|
1469 |
+
"loss": 0.003,
|
1470 |
+
"step": 203
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 1.6062992125984252,
|
1474 |
+
"grad_norm": 0.07945302873849869,
|
1475 |
+
"learning_rate": 9.280849426222778e-06,
|
1476 |
+
"loss": 0.0008,
|
1477 |
+
"step": 204
|
1478 |
+
},
|
1479 |
+
{
|
1480 |
+
"epoch": 1.6141732283464567,
|
1481 |
+
"grad_norm": 0.17767398059368134,
|
1482 |
+
"learning_rate": 9.196416426023868e-06,
|
1483 |
+
"loss": 0.0053,
|
1484 |
+
"step": 205
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 1.6220472440944882,
|
1488 |
+
"grad_norm": 0.12704500555992126,
|
1489 |
+
"learning_rate": 9.112041046770653e-06,
|
1490 |
+
"loss": 0.0023,
|
1491 |
+
"step": 206
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 1.6299212598425197,
|
1495 |
+
"grad_norm": 0.4054742753505707,
|
1496 |
+
"learning_rate": 9.027729338598188e-06,
|
1497 |
+
"loss": 0.0045,
|
1498 |
+
"step": 207
|
1499 |
+
},
|
1500 |
+
{
|
1501 |
+
"epoch": 1.6377952755905512,
|
1502 |
+
"grad_norm": 0.4463757574558258,
|
1503 |
+
"learning_rate": 8.943487347075988e-06,
|
1504 |
+
"loss": 0.007,
|
1505 |
+
"step": 208
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 1.6456692913385826,
|
1509 |
+
"grad_norm": 0.6517045497894287,
|
1510 |
+
"learning_rate": 8.859321112774535e-06,
|
1511 |
+
"loss": 0.0052,
|
1512 |
+
"step": 209
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 1.6535433070866141,
|
1516 |
+
"grad_norm": 0.1542089730501175,
|
1517 |
+
"learning_rate": 8.775236670832146e-06,
|
1518 |
+
"loss": 0.0047,
|
1519 |
+
"step": 210
|
1520 |
+
},
|
1521 |
+
{
|
1522 |
+
"epoch": 1.6614173228346458,
|
1523 |
+
"grad_norm": 0.14716440439224243,
|
1524 |
+
"learning_rate": 8.691240050522215e-06,
|
1525 |
+
"loss": 0.0049,
|
1526 |
+
"step": 211
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 1.6692913385826773,
|
1530 |
+
"grad_norm": 0.2997347116470337,
|
1531 |
+
"learning_rate": 8.607337274820888e-06,
|
1532 |
+
"loss": 0.0076,
|
1533 |
+
"step": 212
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 1.6771653543307088,
|
1537 |
+
"grad_norm": 0.22548256814479828,
|
1538 |
+
"learning_rate": 8.52353435997519e-06,
|
1539 |
+
"loss": 0.0063,
|
1540 |
+
"step": 213
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"epoch": 1.6850393700787403,
|
1544 |
+
"grad_norm": 0.7220733165740967,
|
1545 |
+
"learning_rate": 8.439837315071612e-06,
|
1546 |
+
"loss": 0.0089,
|
1547 |
+
"step": 214
|
1548 |
+
},
|
1549 |
+
{
|
1550 |
+
"epoch": 1.6929133858267718,
|
1551 |
+
"grad_norm": 0.5101618766784668,
|
1552 |
+
"learning_rate": 8.35625214160526e-06,
|
1553 |
+
"loss": 0.0042,
|
1554 |
+
"step": 215
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 1.6929133858267718,
|
1558 |
+
"eval_loss": 0.3484288156032562,
|
1559 |
+
"eval_runtime": 6.4482,
|
1560 |
+
"eval_samples_per_second": 25.278,
|
1561 |
+
"eval_steps_per_second": 3.257,
|
1562 |
+
"step": 215
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 1.7007874015748032,
|
1566 |
+
"grad_norm": 0.1698393076658249,
|
1567 |
+
"learning_rate": 8.272784833049485e-06,
|
1568 |
+
"loss": 0.0028,
|
1569 |
+
"step": 216
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 1.7086614173228347,
|
1573 |
+
"grad_norm": 0.5772718191146851,
|
1574 |
+
"learning_rate": 8.18944137442615e-06,
|
1575 |
+
"loss": 0.0082,
|
1576 |
+
"step": 217
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 1.7165354330708662,
|
1580 |
+
"grad_norm": 0.09606469422578812,
|
1581 |
+
"learning_rate": 8.106227741876447e-06,
|
1582 |
+
"loss": 0.0011,
|
1583 |
+
"step": 218
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 1.7244094488188977,
|
1587 |
+
"grad_norm": 0.14510361850261688,
|
1588 |
+
"learning_rate": 8.023149902232404e-06,
|
1589 |
+
"loss": 0.0015,
|
1590 |
+
"step": 219
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 1.7322834645669292,
|
1594 |
+
"grad_norm": 0.055804118514060974,
|
1595 |
+
"learning_rate": 7.940213812589018e-06,
|
1596 |
+
"loss": 0.0008,
|
1597 |
+
"step": 220
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"epoch": 1.7401574803149606,
|
1601 |
+
"grad_norm": 0.13318321108818054,
|
1602 |
+
"learning_rate": 7.857425419877097e-06,
|
1603 |
+
"loss": 0.005,
|
1604 |
+
"step": 221
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 1.7480314960629921,
|
1608 |
+
"grad_norm": 0.23600782454013824,
|
1609 |
+
"learning_rate": 7.774790660436857e-06,
|
1610 |
+
"loss": 0.0063,
|
1611 |
+
"step": 222
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 1.7559055118110236,
|
1615 |
+
"grad_norm": 0.8483791351318359,
|
1616 |
+
"learning_rate": 7.69231545959223e-06,
|
1617 |
+
"loss": 0.0027,
|
1618 |
+
"step": 223
|
1619 |
+
},
|
1620 |
+
{
|
1621 |
+
"epoch": 1.763779527559055,
|
1622 |
+
"grad_norm": 0.16536197066307068,
|
1623 |
+
"learning_rate": 7.610005731226009e-06,
|
1624 |
+
"loss": 0.0039,
|
1625 |
+
"step": 224
|
1626 |
+
},
|
1627 |
+
{
|
1628 |
+
"epoch": 1.7716535433070866,
|
1629 |
+
"grad_norm": 0.14446765184402466,
|
1630 |
+
"learning_rate": 7.52786737735578e-06,
|
1631 |
+
"loss": 0.0036,
|
1632 |
+
"step": 225
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 1.779527559055118,
|
1636 |
+
"grad_norm": 0.8880365490913391,
|
1637 |
+
"learning_rate": 7.445906287710733e-06,
|
1638 |
+
"loss": 0.0061,
|
1639 |
+
"step": 226
|
1640 |
+
},
|
1641 |
+
{
|
1642 |
+
"epoch": 1.7874015748031495,
|
1643 |
+
"grad_norm": 0.151743084192276,
|
1644 |
+
"learning_rate": 7.364128339309326e-06,
|
1645 |
+
"loss": 0.0028,
|
1646 |
+
"step": 227
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 1.795275590551181,
|
1650 |
+
"grad_norm": 0.1224551647901535,
|
1651 |
+
"learning_rate": 7.282539396037868e-06,
|
1652 |
+
"loss": 0.002,
|
1653 |
+
"step": 228
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 1.8031496062992125,
|
1657 |
+
"grad_norm": 0.4868486225605011,
|
1658 |
+
"learning_rate": 7.201145308230075e-06,
|
1659 |
+
"loss": 0.0031,
|
1660 |
+
"step": 229
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"epoch": 1.811023622047244,
|
1664 |
+
"grad_norm": 0.2875569462776184,
|
1665 |
+
"learning_rate": 7.119951912247545e-06,
|
1666 |
+
"loss": 0.0082,
|
1667 |
+
"step": 230
|
1668 |
+
},
|
1669 |
+
{
|
1670 |
+
"epoch": 1.8188976377952755,
|
1671 |
+
"grad_norm": 0.43524420261383057,
|
1672 |
+
"learning_rate": 7.038965030061273e-06,
|
1673 |
+
"loss": 0.0075,
|
1674 |
+
"step": 231
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 1.826771653543307,
|
1678 |
+
"grad_norm": 0.39634883403778076,
|
1679 |
+
"learning_rate": 6.9581904688341854e-06,
|
1680 |
+
"loss": 0.0032,
|
1681 |
+
"step": 232
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 1.8346456692913384,
|
1685 |
+
"grad_norm": 0.9809433817863464,
|
1686 |
+
"learning_rate": 6.8776340205047446e-06,
|
1687 |
+
"loss": 0.0085,
|
1688 |
+
"step": 233
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 1.84251968503937,
|
1692 |
+
"grad_norm": 0.20062875747680664,
|
1693 |
+
"learning_rate": 6.797301461371626e-06,
|
1694 |
+
"loss": 0.0043,
|
1695 |
+
"step": 234
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 1.8503937007874016,
|
1699 |
+
"grad_norm": 0.148948073387146,
|
1700 |
+
"learning_rate": 6.7171985516795315e-06,
|
1701 |
+
"loss": 0.0036,
|
1702 |
+
"step": 235
|
1703 |
+
},
|
1704 |
+
{
|
1705 |
+
"epoch": 1.858267716535433,
|
1706 |
+
"grad_norm": 0.15658679604530334,
|
1707 |
+
"learning_rate": 6.637331035206166e-06,
|
1708 |
+
"loss": 0.0046,
|
1709 |
+
"step": 236
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"epoch": 1.8661417322834646,
|
1713 |
+
"grad_norm": 0.22365815937519073,
|
1714 |
+
"learning_rate": 6.557704638850352e-06,
|
1715 |
+
"loss": 0.0081,
|
1716 |
+
"step": 237
|
1717 |
+
},
|
1718 |
+
{
|
1719 |
+
"epoch": 1.874015748031496,
|
1720 |
+
"grad_norm": 0.10596666485071182,
|
1721 |
+
"learning_rate": 6.4783250722214066e-06,
|
1722 |
+
"loss": 0.0032,
|
1723 |
+
"step": 238
|
1724 |
+
},
|
1725 |
+
{
|
1726 |
+
"epoch": 1.8818897637795275,
|
1727 |
+
"grad_norm": 0.2130754142999649,
|
1728 |
+
"learning_rate": 6.399198027229732e-06,
|
1729 |
+
"loss": 0.0056,
|
1730 |
+
"step": 239
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 1.889763779527559,
|
1734 |
+
"grad_norm": 0.05641167238354683,
|
1735 |
+
"learning_rate": 6.320329177678656e-06,
|
1736 |
+
"loss": 0.0008,
|
1737 |
+
"step": 240
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 1.8976377952755905,
|
1741 |
+
"grad_norm": 0.10349344462156296,
|
1742 |
+
"learning_rate": 6.241724178857621e-06,
|
1743 |
+
"loss": 0.0026,
|
1744 |
+
"step": 241
|
1745 |
+
},
|
1746 |
+
{
|
1747 |
+
"epoch": 1.905511811023622,
|
1748 |
+
"grad_norm": 0.08451675623655319,
|
1749 |
+
"learning_rate": 6.163388667136646e-06,
|
1750 |
+
"loss": 0.0016,
|
1751 |
+
"step": 242
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 1.9133858267716537,
|
1755 |
+
"grad_norm": 0.13671623170375824,
|
1756 |
+
"learning_rate": 6.085328259562195e-06,
|
1757 |
+
"loss": 0.0034,
|
1758 |
+
"step": 243
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"epoch": 1.9212598425196852,
|
1762 |
+
"grad_norm": 0.5500523447990417,
|
1763 |
+
"learning_rate": 6.007548553454379e-06,
|
1764 |
+
"loss": 0.0028,
|
1765 |
+
"step": 244
|
1766 |
+
},
|
1767 |
+
{
|
1768 |
+
"epoch": 1.9291338582677167,
|
1769 |
+
"grad_norm": 0.06702329218387604,
|
1770 |
+
"learning_rate": 5.93005512600563e-06,
|
1771 |
+
"loss": 0.0009,
|
1772 |
+
"step": 245
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 1.9370078740157481,
|
1776 |
+
"grad_norm": 0.15156973898410797,
|
1777 |
+
"learning_rate": 5.852853533880768e-06,
|
1778 |
+
"loss": 0.0064,
|
1779 |
+
"step": 246
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 1.9448818897637796,
|
1783 |
+
"grad_norm": 0.2970314621925354,
|
1784 |
+
"learning_rate": 5.7759493128185584e-06,
|
1785 |
+
"loss": 0.0077,
|
1786 |
+
"step": 247
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 1.952755905511811,
|
1790 |
+
"grad_norm": 0.06406261771917343,
|
1791 |
+
"learning_rate": 5.699347977234799e-06,
|
1792 |
+
"loss": 0.0006,
|
1793 |
+
"step": 248
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 1.9606299212598426,
|
1797 |
+
"grad_norm": 0.2910393178462982,
|
1798 |
+
"learning_rate": 5.623055019826862e-06,
|
1799 |
+
"loss": 0.0036,
|
1800 |
+
"step": 249
|
1801 |
+
},
|
1802 |
+
{
|
1803 |
+
"epoch": 1.968503937007874,
|
1804 |
+
"grad_norm": 0.6454993486404419,
|
1805 |
+
"learning_rate": 5.547075911179902e-06,
|
1806 |
+
"loss": 0.0084,
|
1807 |
+
"step": 250
|
1808 |
+
},
|
1809 |
+
{
|
1810 |
+
"epoch": 1.9763779527559056,
|
1811 |
+
"grad_norm": 0.09460143744945526,
|
1812 |
+
"learning_rate": 5.471416099374525e-06,
|
1813 |
+
"loss": 0.0021,
|
1814 |
+
"step": 251
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 1.984251968503937,
|
1818 |
+
"grad_norm": 0.2024363875389099,
|
1819 |
+
"learning_rate": 5.3960810095961705e-06,
|
1820 |
+
"loss": 0.0052,
|
1821 |
+
"step": 252
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 1.9921259842519685,
|
1825 |
+
"grad_norm": 0.09423142671585083,
|
1826 |
+
"learning_rate": 5.321076043746108e-06,
|
1827 |
+
"loss": 0.0018,
|
1828 |
+
"step": 253
|
1829 |
+
},
|
1830 |
+
{
|
1831 |
+
"epoch": 2.0,
|
1832 |
+
"grad_norm": 0.1085880920290947,
|
1833 |
+
"learning_rate": 5.246406580054051e-06,
|
1834 |
+
"loss": 0.0039,
|
1835 |
+
"step": 254
|
1836 |
+
}
|
1837 |
+
],
|
1838 |
+
"logging_steps": 1,
|
1839 |
+
"max_steps": 381,
|
1840 |
+
"num_input_tokens_seen": 0,
|
1841 |
+
"num_train_epochs": 3,
|
1842 |
+
"save_steps": 127,
|
1843 |
+
"stateful_callbacks": {
|
1844 |
+
"TrainerControl": {
|
1845 |
+
"args": {
|
1846 |
+
"should_epoch_stop": false,
|
1847 |
+
"should_evaluate": false,
|
1848 |
+
"should_log": false,
|
1849 |
+
"should_save": true,
|
1850 |
+
"should_training_stop": false
|
1851 |
+
},
|
1852 |
+
"attributes": {}
|
1853 |
+
}
|
1854 |
+
},
|
1855 |
+
"total_flos": 2.6174542139778662e+17,
|
1856 |
+
"train_batch_size": 128,
|
1857 |
+
"trial_name": null,
|
1858 |
+
"trial_params": null
|
1859 |
+
}
|
checkpoint-254/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:033fc2cc0303528d4e9ad523b3fd63b75e963b86dba301044379df1d98e6c394
|
3 |
+
size 10744
|
checkpoint-254/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-254/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-381/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-381/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-1.5B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151665
|
28 |
+
}
|
checkpoint-381/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
checkpoint-381/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step381
|
checkpoint-381/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-381/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e894aee6a90801f44c9691e3440b53d94bdf748ea5d51734b11a8228b54f1784
|
3 |
+
size 3552549728
|
checkpoint-381/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f3803bff3f596c03b55881de967a825b5734e4a581739164f9cb9e7fd1aee89
|
3 |
+
size 14512
|
checkpoint-381/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d768a04b798e2ca42effbe096b8e4481f32a402a9125a2ced390586dab8eb29e
|
3 |
+
size 14512
|
checkpoint-381/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:410d31e26656fe111807307d758f91b4394aefad48a9d1d7efaa9992c522efa9
|
3 |
+
size 1064
|
checkpoint-381/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-381/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-381/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-381/trainer_state.json
ADDED
@@ -0,0 +1,2772 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 43,
|
6 |
+
"global_step": 381,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.007874015748031496,
|
13 |
+
"grad_norm": 118.11203002929688,
|
14 |
+
"learning_rate": 2.0000000000000003e-06,
|
15 |
+
"loss": 4.6099,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.007874015748031496,
|
20 |
+
"eval_loss": 3.1001100540161133,
|
21 |
+
"eval_runtime": 5.3966,
|
22 |
+
"eval_samples_per_second": 30.204,
|
23 |
+
"eval_steps_per_second": 3.891,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.015748031496062992,
|
28 |
+
"grad_norm": 118.4310302734375,
|
29 |
+
"learning_rate": 4.000000000000001e-06,
|
30 |
+
"loss": 4.5857,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.023622047244094488,
|
35 |
+
"grad_norm": 103.37439727783203,
|
36 |
+
"learning_rate": 6e-06,
|
37 |
+
"loss": 4.3069,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.031496062992125984,
|
42 |
+
"grad_norm": 75.05075073242188,
|
43 |
+
"learning_rate": 8.000000000000001e-06,
|
44 |
+
"loss": 3.8754,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.03937007874015748,
|
49 |
+
"grad_norm": 50.459983825683594,
|
50 |
+
"learning_rate": 1e-05,
|
51 |
+
"loss": 3.2841,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.047244094488188976,
|
56 |
+
"grad_norm": 47.4603385925293,
|
57 |
+
"learning_rate": 1.2e-05,
|
58 |
+
"loss": 2.4285,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.05511811023622047,
|
63 |
+
"grad_norm": 32.362667083740234,
|
64 |
+
"learning_rate": 1.4e-05,
|
65 |
+
"loss": 1.8177,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.06299212598425197,
|
70 |
+
"grad_norm": 22.846933364868164,
|
71 |
+
"learning_rate": 1.6000000000000003e-05,
|
72 |
+
"loss": 1.1567,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.07086614173228346,
|
77 |
+
"grad_norm": 17.060213088989258,
|
78 |
+
"learning_rate": 1.8e-05,
|
79 |
+
"loss": 0.8257,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.07874015748031496,
|
84 |
+
"grad_norm": 14.415579795837402,
|
85 |
+
"learning_rate": 2e-05,
|
86 |
+
"loss": 0.4257,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.08661417322834646,
|
91 |
+
"grad_norm": 7.753712177276611,
|
92 |
+
"learning_rate": 1.999964147509006e-05,
|
93 |
+
"loss": 0.2976,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.09448818897637795,
|
98 |
+
"grad_norm": 26.883708953857422,
|
99 |
+
"learning_rate": 1.9998565926068253e-05,
|
100 |
+
"loss": 0.3365,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.10236220472440945,
|
105 |
+
"grad_norm": 10.675631523132324,
|
106 |
+
"learning_rate": 1.9996773430056806e-05,
|
107 |
+
"loss": 0.2161,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.11023622047244094,
|
112 |
+
"grad_norm": 6.670111179351807,
|
113 |
+
"learning_rate": 1.999426411558661e-05,
|
114 |
+
"loss": 0.1816,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.11811023622047244,
|
119 |
+
"grad_norm": 8.878239631652832,
|
120 |
+
"learning_rate": 1.9991038162588018e-05,
|
121 |
+
"loss": 0.1567,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.12598425196850394,
|
126 |
+
"grad_norm": 2.9917383193969727,
|
127 |
+
"learning_rate": 1.9987095802377933e-05,
|
128 |
+
"loss": 0.0813,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.13385826771653545,
|
133 |
+
"grad_norm": 1.0548763275146484,
|
134 |
+
"learning_rate": 1.9982437317643218e-05,
|
135 |
+
"loss": 0.0217,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.14173228346456693,
|
140 |
+
"grad_norm": 2.8778488636016846,
|
141 |
+
"learning_rate": 1.9977063042420438e-05,
|
142 |
+
"loss": 0.0618,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.14960629921259844,
|
147 |
+
"grad_norm": 0.9811734557151794,
|
148 |
+
"learning_rate": 1.99709733620719e-05,
|
149 |
+
"loss": 0.0175,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.15748031496062992,
|
154 |
+
"grad_norm": 0.7218202948570251,
|
155 |
+
"learning_rate": 1.996416871325803e-05,
|
156 |
+
"loss": 0.0302,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.16535433070866143,
|
161 |
+
"grad_norm": 1.2746995687484741,
|
162 |
+
"learning_rate": 1.995664958390604e-05,
|
163 |
+
"loss": 0.0453,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.1732283464566929,
|
168 |
+
"grad_norm": 0.9413469433784485,
|
169 |
+
"learning_rate": 1.9948416513174976e-05,
|
170 |
+
"loss": 0.0175,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.18110236220472442,
|
175 |
+
"grad_norm": 1.4161137342453003,
|
176 |
+
"learning_rate": 1.9939470091417012e-05,
|
177 |
+
"loss": 0.0277,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.1889763779527559,
|
182 |
+
"grad_norm": 2.2721235752105713,
|
183 |
+
"learning_rate": 1.992981096013517e-05,
|
184 |
+
"loss": 0.0589,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.1968503937007874,
|
189 |
+
"grad_norm": 1.143970251083374,
|
190 |
+
"learning_rate": 1.9919439811937283e-05,
|
191 |
+
"loss": 0.0182,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.2047244094488189,
|
196 |
+
"grad_norm": 0.8054028749465942,
|
197 |
+
"learning_rate": 1.9908357390486342e-05,
|
198 |
+
"loss": 0.0211,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.2125984251968504,
|
203 |
+
"grad_norm": 1.4449081420898438,
|
204 |
+
"learning_rate": 1.989656449044718e-05,
|
205 |
+
"loss": 0.0244,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.2204724409448819,
|
210 |
+
"grad_norm": 0.49216631054878235,
|
211 |
+
"learning_rate": 1.988406195742948e-05,
|
212 |
+
"loss": 0.005,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.2283464566929134,
|
217 |
+
"grad_norm": 0.9945647716522217,
|
218 |
+
"learning_rate": 1.987085068792715e-05,
|
219 |
+
"loss": 0.0373,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.23622047244094488,
|
224 |
+
"grad_norm": 1.1753748655319214,
|
225 |
+
"learning_rate": 1.9856931629254032e-05,
|
226 |
+
"loss": 0.0217,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.2440944881889764,
|
231 |
+
"grad_norm": 0.5960403680801392,
|
232 |
+
"learning_rate": 1.984230577947597e-05,
|
233 |
+
"loss": 0.0157,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.25196850393700787,
|
238 |
+
"grad_norm": 0.3657272160053253,
|
239 |
+
"learning_rate": 1.9826974187339267e-05,
|
240 |
+
"loss": 0.0082,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.25984251968503935,
|
245 |
+
"grad_norm": 1.1290266513824463,
|
246 |
+
"learning_rate": 1.981093795219546e-05,
|
247 |
+
"loss": 0.0236,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.2677165354330709,
|
252 |
+
"grad_norm": 1.673962116241455,
|
253 |
+
"learning_rate": 1.9794198223922496e-05,
|
254 |
+
"loss": 0.0182,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.2755905511811024,
|
259 |
+
"grad_norm": 0.540355384349823,
|
260 |
+
"learning_rate": 1.9776756202842297e-05,
|
261 |
+
"loss": 0.011,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.28346456692913385,
|
266 |
+
"grad_norm": 0.3380790054798126,
|
267 |
+
"learning_rate": 1.9758613139634662e-05,
|
268 |
+
"loss": 0.0048,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.29133858267716534,
|
273 |
+
"grad_norm": 1.886232852935791,
|
274 |
+
"learning_rate": 1.9739770335247616e-05,
|
275 |
+
"loss": 0.0157,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.2992125984251969,
|
280 |
+
"grad_norm": 2.140639305114746,
|
281 |
+
"learning_rate": 1.972022914080411e-05,
|
282 |
+
"loss": 0.0393,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.30708661417322836,
|
287 |
+
"grad_norm": 0.35308870673179626,
|
288 |
+
"learning_rate": 1.9699990957505136e-05,
|
289 |
+
"loss": 0.0074,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.31496062992125984,
|
294 |
+
"grad_norm": 0.3918301463127136,
|
295 |
+
"learning_rate": 1.9679057236529266e-05,
|
296 |
+
"loss": 0.0083,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.3228346456692913,
|
301 |
+
"grad_norm": 0.4406338632106781,
|
302 |
+
"learning_rate": 1.965742947892858e-05,
|
303 |
+
"loss": 0.0152,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.33070866141732286,
|
308 |
+
"grad_norm": 0.6819682121276855,
|
309 |
+
"learning_rate": 1.9635109235521057e-05,
|
310 |
+
"loss": 0.0091,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.33858267716535434,
|
315 |
+
"grad_norm": 0.6794927716255188,
|
316 |
+
"learning_rate": 1.961209810677934e-05,
|
317 |
+
"loss": 0.0071,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.33858267716535434,
|
322 |
+
"eval_loss": 0.3895845115184784,
|
323 |
+
"eval_runtime": 6.5602,
|
324 |
+
"eval_samples_per_second": 24.847,
|
325 |
+
"eval_steps_per_second": 3.201,
|
326 |
+
"step": 43
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.3464566929133858,
|
330 |
+
"grad_norm": 0.3874967694282532,
|
331 |
+
"learning_rate": 1.9588397742716004e-05,
|
332 |
+
"loss": 0.0089,
|
333 |
+
"step": 44
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.3543307086614173,
|
337 |
+
"grad_norm": 0.5577577352523804,
|
338 |
+
"learning_rate": 1.9564009842765225e-05,
|
339 |
+
"loss": 0.0098,
|
340 |
+
"step": 45
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.36220472440944884,
|
344 |
+
"grad_norm": 0.8152347207069397,
|
345 |
+
"learning_rate": 1.9538936155660934e-05,
|
346 |
+
"loss": 0.0118,
|
347 |
+
"step": 46
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.3700787401574803,
|
351 |
+
"grad_norm": 0.2971118688583374,
|
352 |
+
"learning_rate": 1.951317847931141e-05,
|
353 |
+
"loss": 0.0084,
|
354 |
+
"step": 47
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.3779527559055118,
|
358 |
+
"grad_norm": 1.0286651849746704,
|
359 |
+
"learning_rate": 1.9486738660670373e-05,
|
360 |
+
"loss": 0.0123,
|
361 |
+
"step": 48
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.3858267716535433,
|
365 |
+
"grad_norm": 0.5227222442626953,
|
366 |
+
"learning_rate": 1.945961859560454e-05,
|
367 |
+
"loss": 0.0144,
|
368 |
+
"step": 49
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.3937007874015748,
|
372 |
+
"grad_norm": 0.461935818195343,
|
373 |
+
"learning_rate": 1.943182022875769e-05,
|
374 |
+
"loss": 0.0119,
|
375 |
+
"step": 50
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.4015748031496063,
|
379 |
+
"grad_norm": 1.2550626993179321,
|
380 |
+
"learning_rate": 1.940334555341122e-05,
|
381 |
+
"loss": 0.013,
|
382 |
+
"step": 51
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 0.4094488188976378,
|
386 |
+
"grad_norm": 0.37549659609794617,
|
387 |
+
"learning_rate": 1.9374196611341212e-05,
|
388 |
+
"loss": 0.0181,
|
389 |
+
"step": 52
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.41732283464566927,
|
393 |
+
"grad_norm": 0.3444191515445709,
|
394 |
+
"learning_rate": 1.9344375492672024e-05,
|
395 |
+
"loss": 0.0111,
|
396 |
+
"step": 53
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.4251968503937008,
|
400 |
+
"grad_norm": 0.3489387333393097,
|
401 |
+
"learning_rate": 1.9313884335726443e-05,
|
402 |
+
"loss": 0.0111,
|
403 |
+
"step": 54
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.4330708661417323,
|
407 |
+
"grad_norm": 0.26080814003944397,
|
408 |
+
"learning_rate": 1.9282725326872324e-05,
|
409 |
+
"loss": 0.0091,
|
410 |
+
"step": 55
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.4409448818897638,
|
414 |
+
"grad_norm": 0.1390451341867447,
|
415 |
+
"learning_rate": 1.9250900700365837e-05,
|
416 |
+
"loss": 0.0033,
|
417 |
+
"step": 56
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.44881889763779526,
|
421 |
+
"grad_norm": 0.20499111711978912,
|
422 |
+
"learning_rate": 1.921841273819125e-05,
|
423 |
+
"loss": 0.0066,
|
424 |
+
"step": 57
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.4566929133858268,
|
428 |
+
"grad_norm": 2.185487747192383,
|
429 |
+
"learning_rate": 1.918526376989731e-05,
|
430 |
+
"loss": 0.0095,
|
431 |
+
"step": 58
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.4645669291338583,
|
435 |
+
"grad_norm": 0.23939816653728485,
|
436 |
+
"learning_rate": 1.9151456172430186e-05,
|
437 |
+
"loss": 0.0048,
|
438 |
+
"step": 59
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.47244094488188976,
|
442 |
+
"grad_norm": 0.41510018706321716,
|
443 |
+
"learning_rate": 1.911699236996305e-05,
|
444 |
+
"loss": 0.0077,
|
445 |
+
"step": 60
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.48031496062992124,
|
449 |
+
"grad_norm": 0.264318585395813,
|
450 |
+
"learning_rate": 1.9081874833722234e-05,
|
451 |
+
"loss": 0.0129,
|
452 |
+
"step": 61
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.4881889763779528,
|
456 |
+
"grad_norm": 1.0443968772888184,
|
457 |
+
"learning_rate": 1.9046106081810047e-05,
|
458 |
+
"loss": 0.0035,
|
459 |
+
"step": 62
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.49606299212598426,
|
463 |
+
"grad_norm": 0.2800132632255554,
|
464 |
+
"learning_rate": 1.900968867902419e-05,
|
465 |
+
"loss": 0.0057,
|
466 |
+
"step": 63
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.5039370078740157,
|
470 |
+
"grad_norm": 1.114960789680481,
|
471 |
+
"learning_rate": 1.8972625236673887e-05,
|
472 |
+
"loss": 0.0123,
|
473 |
+
"step": 64
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.5118110236220472,
|
477 |
+
"grad_norm": 0.5027065873146057,
|
478 |
+
"learning_rate": 1.8934918412392596e-05,
|
479 |
+
"loss": 0.0052,
|
480 |
+
"step": 65
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.5196850393700787,
|
484 |
+
"grad_norm": 0.5564169883728027,
|
485 |
+
"learning_rate": 1.8896570909947477e-05,
|
486 |
+
"loss": 0.0085,
|
487 |
+
"step": 66
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.5275590551181102,
|
491 |
+
"grad_norm": 0.7567198872566223,
|
492 |
+
"learning_rate": 1.8857585479045493e-05,
|
493 |
+
"loss": 0.0054,
|
494 |
+
"step": 67
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.5354330708661418,
|
498 |
+
"grad_norm": 0.13573969900608063,
|
499 |
+
"learning_rate": 1.8817964915136277e-05,
|
500 |
+
"loss": 0.0008,
|
501 |
+
"step": 68
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.5433070866141733,
|
505 |
+
"grad_norm": 0.2704390287399292,
|
506 |
+
"learning_rate": 1.8777712059211643e-05,
|
507 |
+
"loss": 0.0078,
|
508 |
+
"step": 69
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.5511811023622047,
|
512 |
+
"grad_norm": 0.6014392971992493,
|
513 |
+
"learning_rate": 1.8736829797601903e-05,
|
514 |
+
"loss": 0.0059,
|
515 |
+
"step": 70
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.5590551181102362,
|
519 |
+
"grad_norm": 0.5487034916877747,
|
520 |
+
"learning_rate": 1.8695321061768886e-05,
|
521 |
+
"loss": 0.0097,
|
522 |
+
"step": 71
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.5669291338582677,
|
526 |
+
"grad_norm": 0.6670834422111511,
|
527 |
+
"learning_rate": 1.8653188828095754e-05,
|
528 |
+
"loss": 0.011,
|
529 |
+
"step": 72
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.5748031496062992,
|
533 |
+
"grad_norm": 0.1795203685760498,
|
534 |
+
"learning_rate": 1.8610436117673557e-05,
|
535 |
+
"loss": 0.0067,
|
536 |
+
"step": 73
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.5826771653543307,
|
540 |
+
"grad_norm": 1.768436074256897,
|
541 |
+
"learning_rate": 1.8567065996084628e-05,
|
542 |
+
"loss": 0.0096,
|
543 |
+
"step": 74
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.5905511811023622,
|
547 |
+
"grad_norm": 0.26233312487602234,
|
548 |
+
"learning_rate": 1.8523081573182754e-05,
|
549 |
+
"loss": 0.0124,
|
550 |
+
"step": 75
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.5984251968503937,
|
554 |
+
"grad_norm": 0.3775719404220581,
|
555 |
+
"learning_rate": 1.847848600287019e-05,
|
556 |
+
"loss": 0.0052,
|
557 |
+
"step": 76
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.6062992125984252,
|
561 |
+
"grad_norm": 1.0016565322875977,
|
562 |
+
"learning_rate": 1.8433282482871497e-05,
|
563 |
+
"loss": 0.0058,
|
564 |
+
"step": 77
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.6141732283464567,
|
568 |
+
"grad_norm": 0.20153792202472687,
|
569 |
+
"learning_rate": 1.8387474254504265e-05,
|
570 |
+
"loss": 0.0056,
|
571 |
+
"step": 78
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.6220472440944882,
|
575 |
+
"grad_norm": 0.5119822025299072,
|
576 |
+
"learning_rate": 1.8341064602446686e-05,
|
577 |
+
"loss": 0.0079,
|
578 |
+
"step": 79
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.6299212598425197,
|
582 |
+
"grad_norm": 1.5781004428863525,
|
583 |
+
"learning_rate": 1.829405685450202e-05,
|
584 |
+
"loss": 0.008,
|
585 |
+
"step": 80
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.6377952755905512,
|
589 |
+
"grad_norm": 0.23826757073402405,
|
590 |
+
"learning_rate": 1.824645438135999e-05,
|
591 |
+
"loss": 0.0041,
|
592 |
+
"step": 81
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 0.6456692913385826,
|
596 |
+
"grad_norm": 0.6386727690696716,
|
597 |
+
"learning_rate": 1.8198260596355077e-05,
|
598 |
+
"loss": 0.0188,
|
599 |
+
"step": 82
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.6535433070866141,
|
603 |
+
"grad_norm": 0.9503199458122253,
|
604 |
+
"learning_rate": 1.814947895522176e-05,
|
605 |
+
"loss": 0.008,
|
606 |
+
"step": 83
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.6614173228346457,
|
610 |
+
"grad_norm": 0.2040701061487198,
|
611 |
+
"learning_rate": 1.8100112955846746e-05,
|
612 |
+
"loss": 0.0038,
|
613 |
+
"step": 84
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.6692913385826772,
|
617 |
+
"grad_norm": 0.3660199046134949,
|
618 |
+
"learning_rate": 1.805016613801813e-05,
|
619 |
+
"loss": 0.0148,
|
620 |
+
"step": 85
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.6771653543307087,
|
624 |
+
"grad_norm": 1.0502821207046509,
|
625 |
+
"learning_rate": 1.7999642083171576e-05,
|
626 |
+
"loss": 0.0098,
|
627 |
+
"step": 86
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.6771653543307087,
|
631 |
+
"eval_loss": 0.3526817262172699,
|
632 |
+
"eval_runtime": 6.6167,
|
633 |
+
"eval_samples_per_second": 24.635,
|
634 |
+
"eval_steps_per_second": 3.174,
|
635 |
+
"step": 86
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.6850393700787402,
|
639 |
+
"grad_norm": 0.13735969364643097,
|
640 |
+
"learning_rate": 1.7948544414133534e-05,
|
641 |
+
"loss": 0.0022,
|
642 |
+
"step": 87
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 0.6929133858267716,
|
646 |
+
"grad_norm": 0.6425012946128845,
|
647 |
+
"learning_rate": 1.7896876794861443e-05,
|
648 |
+
"loss": 0.0086,
|
649 |
+
"step": 88
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.7007874015748031,
|
653 |
+
"grad_norm": 0.7540380954742432,
|
654 |
+
"learning_rate": 1.7844642930181008e-05,
|
655 |
+
"loss": 0.0062,
|
656 |
+
"step": 89
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.7086614173228346,
|
660 |
+
"grad_norm": 0.6727365255355835,
|
661 |
+
"learning_rate": 1.779184656552056e-05,
|
662 |
+
"loss": 0.0027,
|
663 |
+
"step": 90
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.7165354330708661,
|
667 |
+
"grad_norm": 0.14059337973594666,
|
668 |
+
"learning_rate": 1.773849148664247e-05,
|
669 |
+
"loss": 0.0056,
|
670 |
+
"step": 91
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 0.7244094488188977,
|
674 |
+
"grad_norm": 0.33292093873023987,
|
675 |
+
"learning_rate": 1.7684581519371714e-05,
|
676 |
+
"loss": 0.0047,
|
677 |
+
"step": 92
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 0.7322834645669292,
|
681 |
+
"grad_norm": 0.3809877932071686,
|
682 |
+
"learning_rate": 1.7630120529321518e-05,
|
683 |
+
"loss": 0.0139,
|
684 |
+
"step": 93
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 0.7401574803149606,
|
688 |
+
"grad_norm": 1.729589819908142,
|
689 |
+
"learning_rate": 1.7575112421616203e-05,
|
690 |
+
"loss": 0.0128,
|
691 |
+
"step": 94
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.7480314960629921,
|
695 |
+
"grad_norm": 0.18192608654499054,
|
696 |
+
"learning_rate": 1.751956114061113e-05,
|
697 |
+
"loss": 0.0025,
|
698 |
+
"step": 95
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.7559055118110236,
|
702 |
+
"grad_norm": 1.0333118438720703,
|
703 |
+
"learning_rate": 1.7463470669609907e-05,
|
704 |
+
"loss": 0.006,
|
705 |
+
"step": 96
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.7637795275590551,
|
709 |
+
"grad_norm": 0.7247685194015503,
|
710 |
+
"learning_rate": 1.7406845030578747e-05,
|
711 |
+
"loss": 0.0073,
|
712 |
+
"step": 97
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.7716535433070866,
|
716 |
+
"grad_norm": 0.06979379802942276,
|
717 |
+
"learning_rate": 1.734968828385808e-05,
|
718 |
+
"loss": 0.0005,
|
719 |
+
"step": 98
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.7795275590551181,
|
723 |
+
"grad_norm": 0.5137119293212891,
|
724 |
+
"learning_rate": 1.729200452787139e-05,
|
725 |
+
"loss": 0.0082,
|
726 |
+
"step": 99
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"epoch": 0.7874015748031497,
|
730 |
+
"grad_norm": 0.4704137146472931,
|
731 |
+
"learning_rate": 1.7233797898831376e-05,
|
732 |
+
"loss": 0.005,
|
733 |
+
"step": 100
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.7952755905511811,
|
737 |
+
"grad_norm": 0.28564465045928955,
|
738 |
+
"learning_rate": 1.717507257044331e-05,
|
739 |
+
"loss": 0.0052,
|
740 |
+
"step": 101
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.8031496062992126,
|
744 |
+
"grad_norm": 0.17685537040233612,
|
745 |
+
"learning_rate": 1.711583275360582e-05,
|
746 |
+
"loss": 0.0024,
|
747 |
+
"step": 102
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.8110236220472441,
|
751 |
+
"grad_norm": 0.45714935660362244,
|
752 |
+
"learning_rate": 1.7056082696108896e-05,
|
753 |
+
"loss": 0.0072,
|
754 |
+
"step": 103
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.8188976377952756,
|
758 |
+
"grad_norm": 0.4373086988925934,
|
759 |
+
"learning_rate": 1.699582668232934e-05,
|
760 |
+
"loss": 0.0051,
|
761 |
+
"step": 104
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.8267716535433071,
|
765 |
+
"grad_norm": 0.8478983640670776,
|
766 |
+
"learning_rate": 1.6935069032923525e-05,
|
767 |
+
"loss": 0.022,
|
768 |
+
"step": 105
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 0.8346456692913385,
|
772 |
+
"grad_norm": 0.16181086003780365,
|
773 |
+
"learning_rate": 1.6873814104517617e-05,
|
774 |
+
"loss": 0.0058,
|
775 |
+
"step": 106
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.84251968503937,
|
779 |
+
"grad_norm": 0.09503592550754547,
|
780 |
+
"learning_rate": 1.6812066289395157e-05,
|
781 |
+
"loss": 0.0009,
|
782 |
+
"step": 107
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.8503937007874016,
|
786 |
+
"grad_norm": 0.7462632060050964,
|
787 |
+
"learning_rate": 1.6749830015182106e-05,
|
788 |
+
"loss": 0.0044,
|
789 |
+
"step": 108
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.8582677165354331,
|
793 |
+
"grad_norm": 0.07221701741218567,
|
794 |
+
"learning_rate": 1.6687109744529394e-05,
|
795 |
+
"loss": 0.0015,
|
796 |
+
"step": 109
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 0.8661417322834646,
|
800 |
+
"grad_norm": 0.08999036252498627,
|
801 |
+
"learning_rate": 1.6623909974792888e-05,
|
802 |
+
"loss": 0.0023,
|
803 |
+
"step": 110
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 0.8740157480314961,
|
807 |
+
"grad_norm": 0.42536938190460205,
|
808 |
+
"learning_rate": 1.656023523771095e-05,
|
809 |
+
"loss": 0.005,
|
810 |
+
"step": 111
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 0.8818897637795275,
|
814 |
+
"grad_norm": 0.7885191440582275,
|
815 |
+
"learning_rate": 1.6496090099079452e-05,
|
816 |
+
"loss": 0.0103,
|
817 |
+
"step": 112
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 0.889763779527559,
|
821 |
+
"grad_norm": 0.16610018908977509,
|
822 |
+
"learning_rate": 1.64314791584244e-05,
|
823 |
+
"loss": 0.006,
|
824 |
+
"step": 113
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.8976377952755905,
|
828 |
+
"grad_norm": 0.32151034474372864,
|
829 |
+
"learning_rate": 1.6366407048672135e-05,
|
830 |
+
"loss": 0.0086,
|
831 |
+
"step": 114
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.905511811023622,
|
835 |
+
"grad_norm": 0.557732343673706,
|
836 |
+
"learning_rate": 1.6300878435817115e-05,
|
837 |
+
"loss": 0.0064,
|
838 |
+
"step": 115
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 0.9133858267716536,
|
842 |
+
"grad_norm": 0.2238176167011261,
|
843 |
+
"learning_rate": 1.6234898018587336e-05,
|
844 |
+
"loss": 0.0065,
|
845 |
+
"step": 116
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 0.9212598425196851,
|
849 |
+
"grad_norm": 0.2980042099952698,
|
850 |
+
"learning_rate": 1.616847052810744e-05,
|
851 |
+
"loss": 0.0095,
|
852 |
+
"step": 117
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 0.9291338582677166,
|
856 |
+
"grad_norm": 0.1529705822467804,
|
857 |
+
"learning_rate": 1.6101600727559423e-05,
|
858 |
+
"loss": 0.0062,
|
859 |
+
"step": 118
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 0.937007874015748,
|
863 |
+
"grad_norm": 0.017149658873677254,
|
864 |
+
"learning_rate": 1.603429341184114e-05,
|
865 |
+
"loss": 0.0002,
|
866 |
+
"step": 119
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.9448818897637795,
|
870 |
+
"grad_norm": 0.4514746367931366,
|
871 |
+
"learning_rate": 1.596655340722244e-05,
|
872 |
+
"loss": 0.0067,
|
873 |
+
"step": 120
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.952755905511811,
|
877 |
+
"grad_norm": 0.11766134947538376,
|
878 |
+
"learning_rate": 1.5898385570999146e-05,
|
879 |
+
"loss": 0.0053,
|
880 |
+
"step": 121
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 0.9606299212598425,
|
884 |
+
"grad_norm": 0.4089784026145935,
|
885 |
+
"learning_rate": 1.5829794791144723e-05,
|
886 |
+
"loss": 0.0085,
|
887 |
+
"step": 122
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 0.968503937007874,
|
891 |
+
"grad_norm": 0.1353057473897934,
|
892 |
+
"learning_rate": 1.57607859859598e-05,
|
893 |
+
"loss": 0.0013,
|
894 |
+
"step": 123
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 0.9763779527559056,
|
898 |
+
"grad_norm": 0.6548481583595276,
|
899 |
+
"learning_rate": 1.5691364103719515e-05,
|
900 |
+
"loss": 0.0117,
|
901 |
+
"step": 124
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 0.984251968503937,
|
905 |
+
"grad_norm": 0.1571267992258072,
|
906 |
+
"learning_rate": 1.5621534122318682e-05,
|
907 |
+
"loss": 0.0049,
|
908 |
+
"step": 125
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.9921259842519685,
|
912 |
+
"grad_norm": 1.2177189588546753,
|
913 |
+
"learning_rate": 1.5551301048914863e-05,
|
914 |
+
"loss": 0.0161,
|
915 |
+
"step": 126
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 1.0,
|
919 |
+
"grad_norm": 0.414489209651947,
|
920 |
+
"learning_rate": 1.5480669919569313e-05,
|
921 |
+
"loss": 0.0181,
|
922 |
+
"step": 127
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 1.0078740157480315,
|
926 |
+
"grad_norm": 0.10985995829105377,
|
927 |
+
"learning_rate": 1.54096457988859e-05,
|
928 |
+
"loss": 0.0049,
|
929 |
+
"step": 128
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 1.015748031496063,
|
933 |
+
"grad_norm": 0.12780147790908813,
|
934 |
+
"learning_rate": 1.533823377964791e-05,
|
935 |
+
"loss": 0.0026,
|
936 |
+
"step": 129
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 1.015748031496063,
|
940 |
+
"eval_loss": 0.33064374327659607,
|
941 |
+
"eval_runtime": 6.9286,
|
942 |
+
"eval_samples_per_second": 23.526,
|
943 |
+
"eval_steps_per_second": 3.031,
|
944 |
+
"step": 129
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 1.0236220472440944,
|
948 |
+
"grad_norm": 0.5142458081245422,
|
949 |
+
"learning_rate": 1.52664389824529e-05,
|
950 |
+
"loss": 0.0082,
|
951 |
+
"step": 130
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 1.031496062992126,
|
955 |
+
"grad_norm": 0.15617145597934723,
|
956 |
+
"learning_rate": 1.5194266555345505e-05,
|
957 |
+
"loss": 0.0016,
|
958 |
+
"step": 131
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"epoch": 1.0393700787401574,
|
962 |
+
"grad_norm": 0.5782387852668762,
|
963 |
+
"learning_rate": 1.5121721673448319e-05,
|
964 |
+
"loss": 0.0117,
|
965 |
+
"step": 132
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 1.047244094488189,
|
969 |
+
"grad_norm": 0.08414836972951889,
|
970 |
+
"learning_rate": 1.5048809538590789e-05,
|
971 |
+
"loss": 0.0021,
|
972 |
+
"step": 133
|
973 |
+
},
|
974 |
+
{
|
975 |
+
"epoch": 1.0551181102362204,
|
976 |
+
"grad_norm": 0.28253939747810364,
|
977 |
+
"learning_rate": 1.4975535378936228e-05,
|
978 |
+
"loss": 0.0055,
|
979 |
+
"step": 134
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 1.0629921259842519,
|
983 |
+
"grad_norm": 0.47917842864990234,
|
984 |
+
"learning_rate": 1.490190444860694e-05,
|
985 |
+
"loss": 0.0046,
|
986 |
+
"step": 135
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 1.0708661417322836,
|
990 |
+
"grad_norm": 0.1895662248134613,
|
991 |
+
"learning_rate": 1.482792202730745e-05,
|
992 |
+
"loss": 0.006,
|
993 |
+
"step": 136
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 1.078740157480315,
|
997 |
+
"grad_norm": 0.13722768425941467,
|
998 |
+
"learning_rate": 1.475359341994595e-05,
|
999 |
+
"loss": 0.0031,
|
1000 |
+
"step": 137
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 1.0866141732283465,
|
1004 |
+
"grad_norm": 0.10731153190135956,
|
1005 |
+
"learning_rate": 1.4678923956253894e-05,
|
1006 |
+
"loss": 0.0005,
|
1007 |
+
"step": 138
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"epoch": 1.094488188976378,
|
1011 |
+
"grad_norm": 0.12261265516281128,
|
1012 |
+
"learning_rate": 1.460391899040383e-05,
|
1013 |
+
"loss": 0.0031,
|
1014 |
+
"step": 139
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 1.1023622047244095,
|
1018 |
+
"grad_norm": 0.0038245893083512783,
|
1019 |
+
"learning_rate": 1.4528583900625481e-05,
|
1020 |
+
"loss": 0.0,
|
1021 |
+
"step": 140
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 1.110236220472441,
|
1025 |
+
"grad_norm": 0.28762558102607727,
|
1026 |
+
"learning_rate": 1.4452924088820101e-05,
|
1027 |
+
"loss": 0.004,
|
1028 |
+
"step": 141
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 1.1181102362204725,
|
1032 |
+
"grad_norm": 0.17267552018165588,
|
1033 |
+
"learning_rate": 1.4376944980173138e-05,
|
1034 |
+
"loss": 0.0002,
|
1035 |
+
"step": 142
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 1.125984251968504,
|
1039 |
+
"grad_norm": 0.12727122008800507,
|
1040 |
+
"learning_rate": 1.4300652022765207e-05,
|
1041 |
+
"loss": 0.0029,
|
1042 |
+
"step": 143
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 1.1338582677165354,
|
1046 |
+
"grad_norm": 0.25049135088920593,
|
1047 |
+
"learning_rate": 1.4224050687181442e-05,
|
1048 |
+
"loss": 0.0108,
|
1049 |
+
"step": 144
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 1.141732283464567,
|
1053 |
+
"grad_norm": 0.16092728078365326,
|
1054 |
+
"learning_rate": 1.4147146466119235e-05,
|
1055 |
+
"loss": 0.0024,
|
1056 |
+
"step": 145
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 1.1496062992125984,
|
1060 |
+
"grad_norm": 0.13642658293247223,
|
1061 |
+
"learning_rate": 1.406994487399437e-05,
|
1062 |
+
"loss": 0.0037,
|
1063 |
+
"step": 146
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"epoch": 1.1574803149606299,
|
1067 |
+
"grad_norm": 0.9029403328895569,
|
1068 |
+
"learning_rate": 1.3992451446545624e-05,
|
1069 |
+
"loss": 0.0034,
|
1070 |
+
"step": 147
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 1.1653543307086613,
|
1074 |
+
"grad_norm": 0.19518424570560455,
|
1075 |
+
"learning_rate": 1.3914671740437811e-05,
|
1076 |
+
"loss": 0.0057,
|
1077 |
+
"step": 148
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 1.1732283464566928,
|
1081 |
+
"grad_norm": 0.12140502035617828,
|
1082 |
+
"learning_rate": 1.3836611332863356e-05,
|
1083 |
+
"loss": 0.0041,
|
1084 |
+
"step": 149
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"epoch": 1.1811023622047245,
|
1088 |
+
"grad_norm": 0.5148038864135742,
|
1089 |
+
"learning_rate": 1.3758275821142382e-05,
|
1090 |
+
"loss": 0.0026,
|
1091 |
+
"step": 150
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"epoch": 1.188976377952756,
|
1095 |
+
"grad_norm": 1.828904390335083,
|
1096 |
+
"learning_rate": 1.3679670822321347e-05,
|
1097 |
+
"loss": 0.0024,
|
1098 |
+
"step": 151
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 1.1968503937007875,
|
1102 |
+
"grad_norm": 0.3571717143058777,
|
1103 |
+
"learning_rate": 1.3600801972770272e-05,
|
1104 |
+
"loss": 0.0106,
|
1105 |
+
"step": 152
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"epoch": 1.204724409448819,
|
1109 |
+
"grad_norm": 0.051027003675699234,
|
1110 |
+
"learning_rate": 1.3521674927778594e-05,
|
1111 |
+
"loss": 0.0003,
|
1112 |
+
"step": 153
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 1.2125984251968505,
|
1116 |
+
"grad_norm": 0.6490982174873352,
|
1117 |
+
"learning_rate": 1.3442295361149651e-05,
|
1118 |
+
"loss": 0.0035,
|
1119 |
+
"step": 154
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 1.220472440944882,
|
1123 |
+
"grad_norm": 0.08408445864915848,
|
1124 |
+
"learning_rate": 1.336266896479384e-05,
|
1125 |
+
"loss": 0.0027,
|
1126 |
+
"step": 155
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 1.2283464566929134,
|
1130 |
+
"grad_norm": 0.09666562080383301,
|
1131 |
+
"learning_rate": 1.328280144832047e-05,
|
1132 |
+
"loss": 0.0019,
|
1133 |
+
"step": 156
|
1134 |
+
},
|
1135 |
+
{
|
1136 |
+
"epoch": 1.236220472440945,
|
1137 |
+
"grad_norm": 0.03880690038204193,
|
1138 |
+
"learning_rate": 1.3202698538628376e-05,
|
1139 |
+
"loss": 0.0003,
|
1140 |
+
"step": 157
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"epoch": 1.2440944881889764,
|
1144 |
+
"grad_norm": 0.11940775066614151,
|
1145 |
+
"learning_rate": 1.3122365979495259e-05,
|
1146 |
+
"loss": 0.0024,
|
1147 |
+
"step": 158
|
1148 |
+
},
|
1149 |
+
{
|
1150 |
+
"epoch": 1.2519685039370079,
|
1151 |
+
"grad_norm": 0.1442880481481552,
|
1152 |
+
"learning_rate": 1.3041809531165819e-05,
|
1153 |
+
"loss": 0.0015,
|
1154 |
+
"step": 159
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 1.2598425196850394,
|
1158 |
+
"grad_norm": 0.1961939036846161,
|
1159 |
+
"learning_rate": 1.2961034969938732e-05,
|
1160 |
+
"loss": 0.0056,
|
1161 |
+
"step": 160
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 1.2677165354330708,
|
1165 |
+
"grad_norm": 0.26947638392448425,
|
1166 |
+
"learning_rate": 1.288004808775246e-05,
|
1167 |
+
"loss": 0.0028,
|
1168 |
+
"step": 161
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 1.2755905511811023,
|
1172 |
+
"grad_norm": 0.5154056549072266,
|
1173 |
+
"learning_rate": 1.2798854691769927e-05,
|
1174 |
+
"loss": 0.0037,
|
1175 |
+
"step": 162
|
1176 |
+
},
|
1177 |
+
{
|
1178 |
+
"epoch": 1.2834645669291338,
|
1179 |
+
"grad_norm": 0.4292369782924652,
|
1180 |
+
"learning_rate": 1.2717460603962132e-05,
|
1181 |
+
"loss": 0.0029,
|
1182 |
+
"step": 163
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"epoch": 1.2913385826771653,
|
1186 |
+
"grad_norm": 0.19139212369918823,
|
1187 |
+
"learning_rate": 1.2635871660690677e-05,
|
1188 |
+
"loss": 0.0061,
|
1189 |
+
"step": 164
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 1.2992125984251968,
|
1193 |
+
"grad_norm": 0.19960306584835052,
|
1194 |
+
"learning_rate": 1.2554093712289267e-05,
|
1195 |
+
"loss": 0.005,
|
1196 |
+
"step": 165
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 1.3070866141732282,
|
1200 |
+
"grad_norm": 0.4523830711841583,
|
1201 |
+
"learning_rate": 1.2472132622644222e-05,
|
1202 |
+
"loss": 0.0065,
|
1203 |
+
"step": 166
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.3149606299212597,
|
1207 |
+
"grad_norm": 0.49343299865722656,
|
1208 |
+
"learning_rate": 1.2389994268773995e-05,
|
1209 |
+
"loss": 0.0061,
|
1210 |
+
"step": 167
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 1.3228346456692912,
|
1214 |
+
"grad_norm": 0.01938088797032833,
|
1215 |
+
"learning_rate": 1.2307684540407775e-05,
|
1216 |
+
"loss": 0.0001,
|
1217 |
+
"step": 168
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"epoch": 1.330708661417323,
|
1221 |
+
"grad_norm": 0.3082112669944763,
|
1222 |
+
"learning_rate": 1.2225209339563144e-05,
|
1223 |
+
"loss": 0.0053,
|
1224 |
+
"step": 169
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 1.3385826771653544,
|
1228 |
+
"grad_norm": 0.01982509344816208,
|
1229 |
+
"learning_rate": 1.2142574580122903e-05,
|
1230 |
+
"loss": 0.0001,
|
1231 |
+
"step": 170
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"epoch": 1.3464566929133859,
|
1235 |
+
"grad_norm": 0.12388588488101959,
|
1236 |
+
"learning_rate": 1.2059786187410984e-05,
|
1237 |
+
"loss": 0.0049,
|
1238 |
+
"step": 171
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 1.3543307086614174,
|
1242 |
+
"grad_norm": 0.43759095668792725,
|
1243 |
+
"learning_rate": 1.1976850097767598e-05,
|
1244 |
+
"loss": 0.0128,
|
1245 |
+
"step": 172
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 1.3543307086614174,
|
1249 |
+
"eval_loss": 0.3166251480579376,
|
1250 |
+
"eval_runtime": 6.9515,
|
1251 |
+
"eval_samples_per_second": 23.448,
|
1252 |
+
"eval_steps_per_second": 3.021,
|
1253 |
+
"step": 172
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 1.3622047244094488,
|
1257 |
+
"grad_norm": 0.46561670303344727,
|
1258 |
+
"learning_rate": 1.1893772258123554e-05,
|
1259 |
+
"loss": 0.008,
|
1260 |
+
"step": 173
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 1.3700787401574803,
|
1264 |
+
"grad_norm": 0.16612188518047333,
|
1265 |
+
"learning_rate": 1.1810558625573856e-05,
|
1266 |
+
"loss": 0.0024,
|
1267 |
+
"step": 174
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 1.3779527559055118,
|
1271 |
+
"grad_norm": 0.13628093898296356,
|
1272 |
+
"learning_rate": 1.1727215166950519e-05,
|
1273 |
+
"loss": 0.0045,
|
1274 |
+
"step": 175
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 1.3858267716535433,
|
1278 |
+
"grad_norm": 0.565229058265686,
|
1279 |
+
"learning_rate": 1.1643747858394743e-05,
|
1280 |
+
"loss": 0.0103,
|
1281 |
+
"step": 176
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 1.3937007874015748,
|
1285 |
+
"grad_norm": 0.14550763368606567,
|
1286 |
+
"learning_rate": 1.156016268492839e-05,
|
1287 |
+
"loss": 0.0028,
|
1288 |
+
"step": 177
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 1.4015748031496063,
|
1292 |
+
"grad_norm": 0.12460129708051682,
|
1293 |
+
"learning_rate": 1.1476465640024814e-05,
|
1294 |
+
"loss": 0.0031,
|
1295 |
+
"step": 178
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 1.4094488188976377,
|
1299 |
+
"grad_norm": 0.19089221954345703,
|
1300 |
+
"learning_rate": 1.1392662725179114e-05,
|
1301 |
+
"loss": 0.0035,
|
1302 |
+
"step": 179
|
1303 |
+
},
|
1304 |
+
{
|
1305 |
+
"epoch": 1.4173228346456692,
|
1306 |
+
"grad_norm": 0.6106573343276978,
|
1307 |
+
"learning_rate": 1.1308759949477786e-05,
|
1308 |
+
"loss": 0.0088,
|
1309 |
+
"step": 180
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"epoch": 1.425196850393701,
|
1313 |
+
"grad_norm": 0.20053207874298096,
|
1314 |
+
"learning_rate": 1.1224763329167859e-05,
|
1315 |
+
"loss": 0.0033,
|
1316 |
+
"step": 181
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 1.4330708661417324,
|
1320 |
+
"grad_norm": 0.1984691321849823,
|
1321 |
+
"learning_rate": 1.1140678887225468e-05,
|
1322 |
+
"loss": 0.0051,
|
1323 |
+
"step": 182
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 1.4409448818897639,
|
1327 |
+
"grad_norm": 0.19264858961105347,
|
1328 |
+
"learning_rate": 1.1056512652924014e-05,
|
1329 |
+
"loss": 0.0046,
|
1330 |
+
"step": 183
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 1.4488188976377954,
|
1334 |
+
"grad_norm": 0.10979076474905014,
|
1335 |
+
"learning_rate": 1.0972270661401812e-05,
|
1336 |
+
"loss": 0.0031,
|
1337 |
+
"step": 184
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 1.4566929133858268,
|
1341 |
+
"grad_norm": 0.1744084656238556,
|
1342 |
+
"learning_rate": 1.0887958953229349e-05,
|
1343 |
+
"loss": 0.0024,
|
1344 |
+
"step": 185
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 1.4645669291338583,
|
1348 |
+
"grad_norm": 0.20646224915981293,
|
1349 |
+
"learning_rate": 1.0803583573976137e-05,
|
1350 |
+
"loss": 0.008,
|
1351 |
+
"step": 186
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"epoch": 1.4724409448818898,
|
1355 |
+
"grad_norm": 0.14391584694385529,
|
1356 |
+
"learning_rate": 1.0719150573777226e-05,
|
1357 |
+
"loss": 0.004,
|
1358 |
+
"step": 187
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 1.4803149606299213,
|
1362 |
+
"grad_norm": 0.36887863278388977,
|
1363 |
+
"learning_rate": 1.0634666006899375e-05,
|
1364 |
+
"loss": 0.0074,
|
1365 |
+
"step": 188
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 1.4881889763779528,
|
1369 |
+
"grad_norm": 0.21352627873420715,
|
1370 |
+
"learning_rate": 1.055013593130693e-05,
|
1371 |
+
"loss": 0.0082,
|
1372 |
+
"step": 189
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 1.4960629921259843,
|
1376 |
+
"grad_norm": 0.22443020343780518,
|
1377 |
+
"learning_rate": 1.046556640822744e-05,
|
1378 |
+
"loss": 0.0087,
|
1379 |
+
"step": 190
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 1.5039370078740157,
|
1383 |
+
"grad_norm": 0.4243764281272888,
|
1384 |
+
"learning_rate": 1.0380963501717034e-05,
|
1385 |
+
"loss": 0.0068,
|
1386 |
+
"step": 191
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 1.5118110236220472,
|
1390 |
+
"grad_norm": 0.17558562755584717,
|
1391 |
+
"learning_rate": 1.0296333278225599e-05,
|
1392 |
+
"loss": 0.0054,
|
1393 |
+
"step": 192
|
1394 |
+
},
|
1395 |
+
{
|
1396 |
+
"epoch": 1.5196850393700787,
|
1397 |
+
"grad_norm": 0.14842620491981506,
|
1398 |
+
"learning_rate": 1.0211681806161787e-05,
|
1399 |
+
"loss": 0.0031,
|
1400 |
+
"step": 193
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 1.5275590551181102,
|
1404 |
+
"grad_norm": 0.09316081553697586,
|
1405 |
+
"learning_rate": 1.0127015155457875e-05,
|
1406 |
+
"loss": 0.0013,
|
1407 |
+
"step": 194
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 1.5354330708661417,
|
1411 |
+
"grad_norm": 0.19795025885105133,
|
1412 |
+
"learning_rate": 1.0042339397134528e-05,
|
1413 |
+
"loss": 0.0051,
|
1414 |
+
"step": 195
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"epoch": 1.5433070866141732,
|
1418 |
+
"grad_norm": 0.21606990694999695,
|
1419 |
+
"learning_rate": 9.957660602865477e-06,
|
1420 |
+
"loss": 0.0041,
|
1421 |
+
"step": 196
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 1.5511811023622046,
|
1425 |
+
"grad_norm": 0.18036173284053802,
|
1426 |
+
"learning_rate": 9.872984844542128e-06,
|
1427 |
+
"loss": 0.0037,
|
1428 |
+
"step": 197
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 1.5590551181102361,
|
1432 |
+
"grad_norm": 0.18953870236873627,
|
1433 |
+
"learning_rate": 9.788318193838218e-06,
|
1434 |
+
"loss": 0.0041,
|
1435 |
+
"step": 198
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 1.5669291338582676,
|
1439 |
+
"grad_norm": 0.12346503138542175,
|
1440 |
+
"learning_rate": 9.703666721774403e-06,
|
1441 |
+
"loss": 0.0035,
|
1442 |
+
"step": 199
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 1.574803149606299,
|
1446 |
+
"grad_norm": 0.4576225280761719,
|
1447 |
+
"learning_rate": 9.619036498282968e-06,
|
1448 |
+
"loss": 0.0041,
|
1449 |
+
"step": 200
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 1.5826771653543306,
|
1453 |
+
"grad_norm": 0.10333681106567383,
|
1454 |
+
"learning_rate": 9.534433591772562e-06,
|
1455 |
+
"loss": 0.0011,
|
1456 |
+
"step": 201
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 1.590551181102362,
|
1460 |
+
"grad_norm": 0.19167865812778473,
|
1461 |
+
"learning_rate": 9.449864068693072e-06,
|
1462 |
+
"loss": 0.0062,
|
1463 |
+
"step": 202
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 1.5984251968503937,
|
1467 |
+
"grad_norm": 0.2258184254169464,
|
1468 |
+
"learning_rate": 9.365333993100628e-06,
|
1469 |
+
"loss": 0.003,
|
1470 |
+
"step": 203
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 1.6062992125984252,
|
1474 |
+
"grad_norm": 0.07945302873849869,
|
1475 |
+
"learning_rate": 9.280849426222778e-06,
|
1476 |
+
"loss": 0.0008,
|
1477 |
+
"step": 204
|
1478 |
+
},
|
1479 |
+
{
|
1480 |
+
"epoch": 1.6141732283464567,
|
1481 |
+
"grad_norm": 0.17767398059368134,
|
1482 |
+
"learning_rate": 9.196416426023868e-06,
|
1483 |
+
"loss": 0.0053,
|
1484 |
+
"step": 205
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 1.6220472440944882,
|
1488 |
+
"grad_norm": 0.12704500555992126,
|
1489 |
+
"learning_rate": 9.112041046770653e-06,
|
1490 |
+
"loss": 0.0023,
|
1491 |
+
"step": 206
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 1.6299212598425197,
|
1495 |
+
"grad_norm": 0.4054742753505707,
|
1496 |
+
"learning_rate": 9.027729338598188e-06,
|
1497 |
+
"loss": 0.0045,
|
1498 |
+
"step": 207
|
1499 |
+
},
|
1500 |
+
{
|
1501 |
+
"epoch": 1.6377952755905512,
|
1502 |
+
"grad_norm": 0.4463757574558258,
|
1503 |
+
"learning_rate": 8.943487347075988e-06,
|
1504 |
+
"loss": 0.007,
|
1505 |
+
"step": 208
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 1.6456692913385826,
|
1509 |
+
"grad_norm": 0.6517045497894287,
|
1510 |
+
"learning_rate": 8.859321112774535e-06,
|
1511 |
+
"loss": 0.0052,
|
1512 |
+
"step": 209
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 1.6535433070866141,
|
1516 |
+
"grad_norm": 0.1542089730501175,
|
1517 |
+
"learning_rate": 8.775236670832146e-06,
|
1518 |
+
"loss": 0.0047,
|
1519 |
+
"step": 210
|
1520 |
+
},
|
1521 |
+
{
|
1522 |
+
"epoch": 1.6614173228346458,
|
1523 |
+
"grad_norm": 0.14716440439224243,
|
1524 |
+
"learning_rate": 8.691240050522215e-06,
|
1525 |
+
"loss": 0.0049,
|
1526 |
+
"step": 211
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 1.6692913385826773,
|
1530 |
+
"grad_norm": 0.2997347116470337,
|
1531 |
+
"learning_rate": 8.607337274820888e-06,
|
1532 |
+
"loss": 0.0076,
|
1533 |
+
"step": 212
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 1.6771653543307088,
|
1537 |
+
"grad_norm": 0.22548256814479828,
|
1538 |
+
"learning_rate": 8.52353435997519e-06,
|
1539 |
+
"loss": 0.0063,
|
1540 |
+
"step": 213
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"epoch": 1.6850393700787403,
|
1544 |
+
"grad_norm": 0.7220733165740967,
|
1545 |
+
"learning_rate": 8.439837315071612e-06,
|
1546 |
+
"loss": 0.0089,
|
1547 |
+
"step": 214
|
1548 |
+
},
|
1549 |
+
{
|
1550 |
+
"epoch": 1.6929133858267718,
|
1551 |
+
"grad_norm": 0.5101618766784668,
|
1552 |
+
"learning_rate": 8.35625214160526e-06,
|
1553 |
+
"loss": 0.0042,
|
1554 |
+
"step": 215
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 1.6929133858267718,
|
1558 |
+
"eval_loss": 0.3484288156032562,
|
1559 |
+
"eval_runtime": 6.4482,
|
1560 |
+
"eval_samples_per_second": 25.278,
|
1561 |
+
"eval_steps_per_second": 3.257,
|
1562 |
+
"step": 215
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 1.7007874015748032,
|
1566 |
+
"grad_norm": 0.1698393076658249,
|
1567 |
+
"learning_rate": 8.272784833049485e-06,
|
1568 |
+
"loss": 0.0028,
|
1569 |
+
"step": 216
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 1.7086614173228347,
|
1573 |
+
"grad_norm": 0.5772718191146851,
|
1574 |
+
"learning_rate": 8.18944137442615e-06,
|
1575 |
+
"loss": 0.0082,
|
1576 |
+
"step": 217
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 1.7165354330708662,
|
1580 |
+
"grad_norm": 0.09606469422578812,
|
1581 |
+
"learning_rate": 8.106227741876447e-06,
|
1582 |
+
"loss": 0.0011,
|
1583 |
+
"step": 218
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 1.7244094488188977,
|
1587 |
+
"grad_norm": 0.14510361850261688,
|
1588 |
+
"learning_rate": 8.023149902232404e-06,
|
1589 |
+
"loss": 0.0015,
|
1590 |
+
"step": 219
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 1.7322834645669292,
|
1594 |
+
"grad_norm": 0.055804118514060974,
|
1595 |
+
"learning_rate": 7.940213812589018e-06,
|
1596 |
+
"loss": 0.0008,
|
1597 |
+
"step": 220
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"epoch": 1.7401574803149606,
|
1601 |
+
"grad_norm": 0.13318321108818054,
|
1602 |
+
"learning_rate": 7.857425419877097e-06,
|
1603 |
+
"loss": 0.005,
|
1604 |
+
"step": 221
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 1.7480314960629921,
|
1608 |
+
"grad_norm": 0.23600782454013824,
|
1609 |
+
"learning_rate": 7.774790660436857e-06,
|
1610 |
+
"loss": 0.0063,
|
1611 |
+
"step": 222
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 1.7559055118110236,
|
1615 |
+
"grad_norm": 0.8483791351318359,
|
1616 |
+
"learning_rate": 7.69231545959223e-06,
|
1617 |
+
"loss": 0.0027,
|
1618 |
+
"step": 223
|
1619 |
+
},
|
1620 |
+
{
|
1621 |
+
"epoch": 1.763779527559055,
|
1622 |
+
"grad_norm": 0.16536197066307068,
|
1623 |
+
"learning_rate": 7.610005731226009e-06,
|
1624 |
+
"loss": 0.0039,
|
1625 |
+
"step": 224
|
1626 |
+
},
|
1627 |
+
{
|
1628 |
+
"epoch": 1.7716535433070866,
|
1629 |
+
"grad_norm": 0.14446765184402466,
|
1630 |
+
"learning_rate": 7.52786737735578e-06,
|
1631 |
+
"loss": 0.0036,
|
1632 |
+
"step": 225
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 1.779527559055118,
|
1636 |
+
"grad_norm": 0.8880365490913391,
|
1637 |
+
"learning_rate": 7.445906287710733e-06,
|
1638 |
+
"loss": 0.0061,
|
1639 |
+
"step": 226
|
1640 |
+
},
|
1641 |
+
{
|
1642 |
+
"epoch": 1.7874015748031495,
|
1643 |
+
"grad_norm": 0.151743084192276,
|
1644 |
+
"learning_rate": 7.364128339309326e-06,
|
1645 |
+
"loss": 0.0028,
|
1646 |
+
"step": 227
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 1.795275590551181,
|
1650 |
+
"grad_norm": 0.1224551647901535,
|
1651 |
+
"learning_rate": 7.282539396037868e-06,
|
1652 |
+
"loss": 0.002,
|
1653 |
+
"step": 228
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 1.8031496062992125,
|
1657 |
+
"grad_norm": 0.4868486225605011,
|
1658 |
+
"learning_rate": 7.201145308230075e-06,
|
1659 |
+
"loss": 0.0031,
|
1660 |
+
"step": 229
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"epoch": 1.811023622047244,
|
1664 |
+
"grad_norm": 0.2875569462776184,
|
1665 |
+
"learning_rate": 7.119951912247545e-06,
|
1666 |
+
"loss": 0.0082,
|
1667 |
+
"step": 230
|
1668 |
+
},
|
1669 |
+
{
|
1670 |
+
"epoch": 1.8188976377952755,
|
1671 |
+
"grad_norm": 0.43524420261383057,
|
1672 |
+
"learning_rate": 7.038965030061273e-06,
|
1673 |
+
"loss": 0.0075,
|
1674 |
+
"step": 231
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 1.826771653543307,
|
1678 |
+
"grad_norm": 0.39634883403778076,
|
1679 |
+
"learning_rate": 6.9581904688341854e-06,
|
1680 |
+
"loss": 0.0032,
|
1681 |
+
"step": 232
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 1.8346456692913384,
|
1685 |
+
"grad_norm": 0.9809433817863464,
|
1686 |
+
"learning_rate": 6.8776340205047446e-06,
|
1687 |
+
"loss": 0.0085,
|
1688 |
+
"step": 233
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 1.84251968503937,
|
1692 |
+
"grad_norm": 0.20062875747680664,
|
1693 |
+
"learning_rate": 6.797301461371626e-06,
|
1694 |
+
"loss": 0.0043,
|
1695 |
+
"step": 234
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 1.8503937007874016,
|
1699 |
+
"grad_norm": 0.148948073387146,
|
1700 |
+
"learning_rate": 6.7171985516795315e-06,
|
1701 |
+
"loss": 0.0036,
|
1702 |
+
"step": 235
|
1703 |
+
},
|
1704 |
+
{
|
1705 |
+
"epoch": 1.858267716535433,
|
1706 |
+
"grad_norm": 0.15658679604530334,
|
1707 |
+
"learning_rate": 6.637331035206166e-06,
|
1708 |
+
"loss": 0.0046,
|
1709 |
+
"step": 236
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"epoch": 1.8661417322834646,
|
1713 |
+
"grad_norm": 0.22365815937519073,
|
1714 |
+
"learning_rate": 6.557704638850352e-06,
|
1715 |
+
"loss": 0.0081,
|
1716 |
+
"step": 237
|
1717 |
+
},
|
1718 |
+
{
|
1719 |
+
"epoch": 1.874015748031496,
|
1720 |
+
"grad_norm": 0.10596666485071182,
|
1721 |
+
"learning_rate": 6.4783250722214066e-06,
|
1722 |
+
"loss": 0.0032,
|
1723 |
+
"step": 238
|
1724 |
+
},
|
1725 |
+
{
|
1726 |
+
"epoch": 1.8818897637795275,
|
1727 |
+
"grad_norm": 0.2130754142999649,
|
1728 |
+
"learning_rate": 6.399198027229732e-06,
|
1729 |
+
"loss": 0.0056,
|
1730 |
+
"step": 239
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 1.889763779527559,
|
1734 |
+
"grad_norm": 0.05641167238354683,
|
1735 |
+
"learning_rate": 6.320329177678656e-06,
|
1736 |
+
"loss": 0.0008,
|
1737 |
+
"step": 240
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 1.8976377952755905,
|
1741 |
+
"grad_norm": 0.10349344462156296,
|
1742 |
+
"learning_rate": 6.241724178857621e-06,
|
1743 |
+
"loss": 0.0026,
|
1744 |
+
"step": 241
|
1745 |
+
},
|
1746 |
+
{
|
1747 |
+
"epoch": 1.905511811023622,
|
1748 |
+
"grad_norm": 0.08451675623655319,
|
1749 |
+
"learning_rate": 6.163388667136646e-06,
|
1750 |
+
"loss": 0.0016,
|
1751 |
+
"step": 242
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 1.9133858267716537,
|
1755 |
+
"grad_norm": 0.13671623170375824,
|
1756 |
+
"learning_rate": 6.085328259562195e-06,
|
1757 |
+
"loss": 0.0034,
|
1758 |
+
"step": 243
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"epoch": 1.9212598425196852,
|
1762 |
+
"grad_norm": 0.5500523447990417,
|
1763 |
+
"learning_rate": 6.007548553454379e-06,
|
1764 |
+
"loss": 0.0028,
|
1765 |
+
"step": 244
|
1766 |
+
},
|
1767 |
+
{
|
1768 |
+
"epoch": 1.9291338582677167,
|
1769 |
+
"grad_norm": 0.06702329218387604,
|
1770 |
+
"learning_rate": 5.93005512600563e-06,
|
1771 |
+
"loss": 0.0009,
|
1772 |
+
"step": 245
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 1.9370078740157481,
|
1776 |
+
"grad_norm": 0.15156973898410797,
|
1777 |
+
"learning_rate": 5.852853533880768e-06,
|
1778 |
+
"loss": 0.0064,
|
1779 |
+
"step": 246
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 1.9448818897637796,
|
1783 |
+
"grad_norm": 0.2970314621925354,
|
1784 |
+
"learning_rate": 5.7759493128185584e-06,
|
1785 |
+
"loss": 0.0077,
|
1786 |
+
"step": 247
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 1.952755905511811,
|
1790 |
+
"grad_norm": 0.06406261771917343,
|
1791 |
+
"learning_rate": 5.699347977234799e-06,
|
1792 |
+
"loss": 0.0006,
|
1793 |
+
"step": 248
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 1.9606299212598426,
|
1797 |
+
"grad_norm": 0.2910393178462982,
|
1798 |
+
"learning_rate": 5.623055019826862e-06,
|
1799 |
+
"loss": 0.0036,
|
1800 |
+
"step": 249
|
1801 |
+
},
|
1802 |
+
{
|
1803 |
+
"epoch": 1.968503937007874,
|
1804 |
+
"grad_norm": 0.6454993486404419,
|
1805 |
+
"learning_rate": 5.547075911179902e-06,
|
1806 |
+
"loss": 0.0084,
|
1807 |
+
"step": 250
|
1808 |
+
},
|
1809 |
+
{
|
1810 |
+
"epoch": 1.9763779527559056,
|
1811 |
+
"grad_norm": 0.09460143744945526,
|
1812 |
+
"learning_rate": 5.471416099374525e-06,
|
1813 |
+
"loss": 0.0021,
|
1814 |
+
"step": 251
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 1.984251968503937,
|
1818 |
+
"grad_norm": 0.2024363875389099,
|
1819 |
+
"learning_rate": 5.3960810095961705e-06,
|
1820 |
+
"loss": 0.0052,
|
1821 |
+
"step": 252
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 1.9921259842519685,
|
1825 |
+
"grad_norm": 0.09423142671585083,
|
1826 |
+
"learning_rate": 5.321076043746108e-06,
|
1827 |
+
"loss": 0.0018,
|
1828 |
+
"step": 253
|
1829 |
+
},
|
1830 |
+
{
|
1831 |
+
"epoch": 2.0,
|
1832 |
+
"grad_norm": 0.1085880920290947,
|
1833 |
+
"learning_rate": 5.246406580054051e-06,
|
1834 |
+
"loss": 0.0039,
|
1835 |
+
"step": 254
|
1836 |
+
},
|
1837 |
+
{
|
1838 |
+
"epoch": 2.0078740157480315,
|
1839 |
+
"grad_norm": 0.20550444722175598,
|
1840 |
+
"learning_rate": 5.172077972692553e-06,
|
1841 |
+
"loss": 0.0006,
|
1842 |
+
"step": 255
|
1843 |
+
},
|
1844 |
+
{
|
1845 |
+
"epoch": 2.015748031496063,
|
1846 |
+
"grad_norm": 0.0635254830121994,
|
1847 |
+
"learning_rate": 5.098095551393066e-06,
|
1848 |
+
"loss": 0.0008,
|
1849 |
+
"step": 256
|
1850 |
+
},
|
1851 |
+
{
|
1852 |
+
"epoch": 2.0236220472440944,
|
1853 |
+
"grad_norm": 0.12593789398670197,
|
1854 |
+
"learning_rate": 5.024464621063773e-06,
|
1855 |
+
"loss": 0.0016,
|
1856 |
+
"step": 257
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 2.031496062992126,
|
1860 |
+
"grad_norm": 0.08928010612726212,
|
1861 |
+
"learning_rate": 4.951190461409214e-06,
|
1862 |
+
"loss": 0.0019,
|
1863 |
+
"step": 258
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 2.031496062992126,
|
1867 |
+
"eval_loss": 0.2930968105792999,
|
1868 |
+
"eval_runtime": 7.0864,
|
1869 |
+
"eval_samples_per_second": 23.002,
|
1870 |
+
"eval_steps_per_second": 2.963,
|
1871 |
+
"step": 258
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 2.0393700787401574,
|
1875 |
+
"grad_norm": 0.11555846035480499,
|
1876 |
+
"learning_rate": 4.878278326551682e-06,
|
1877 |
+
"loss": 0.0036,
|
1878 |
+
"step": 259
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 2.047244094488189,
|
1882 |
+
"grad_norm": 0.11923055350780487,
|
1883 |
+
"learning_rate": 4.805733444654496e-06,
|
1884 |
+
"loss": 0.0011,
|
1885 |
+
"step": 260
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 2.0551181102362204,
|
1889 |
+
"grad_norm": 0.5410908460617065,
|
1890 |
+
"learning_rate": 4.733561017547104e-06,
|
1891 |
+
"loss": 0.0065,
|
1892 |
+
"step": 261
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 2.062992125984252,
|
1896 |
+
"grad_norm": 0.43598446249961853,
|
1897 |
+
"learning_rate": 4.661766220352098e-06,
|
1898 |
+
"loss": 0.004,
|
1899 |
+
"step": 262
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 2.0708661417322833,
|
1903 |
+
"grad_norm": 0.08221737295389175,
|
1904 |
+
"learning_rate": 4.590354201114103e-06,
|
1905 |
+
"loss": 0.0018,
|
1906 |
+
"step": 263
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 2.078740157480315,
|
1910 |
+
"grad_norm": 0.07835202664136887,
|
1911 |
+
"learning_rate": 4.519330080430687e-06,
|
1912 |
+
"loss": 0.0011,
|
1913 |
+
"step": 264
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 2.0866141732283463,
|
1917 |
+
"grad_norm": 0.1391119360923767,
|
1918 |
+
"learning_rate": 4.448698951085143e-06,
|
1919 |
+
"loss": 0.0018,
|
1920 |
+
"step": 265
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 2.094488188976378,
|
1924 |
+
"grad_norm": 0.10286661982536316,
|
1925 |
+
"learning_rate": 4.378465877681317e-06,
|
1926 |
+
"loss": 0.0021,
|
1927 |
+
"step": 266
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 2.1023622047244093,
|
1931 |
+
"grad_norm": 0.16050903499126434,
|
1932 |
+
"learning_rate": 4.3086358962804885e-06,
|
1933 |
+
"loss": 0.004,
|
1934 |
+
"step": 267
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 2.1102362204724407,
|
1938 |
+
"grad_norm": 0.1615462303161621,
|
1939 |
+
"learning_rate": 4.2392140140401996e-06,
|
1940 |
+
"loss": 0.0049,
|
1941 |
+
"step": 268
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 2.1181102362204722,
|
1945 |
+
"grad_norm": 0.12022113800048828,
|
1946 |
+
"learning_rate": 4.170205208855281e-06,
|
1947 |
+
"loss": 0.0021,
|
1948 |
+
"step": 269
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 2.1259842519685037,
|
1952 |
+
"grad_norm": 0.18673180043697357,
|
1953 |
+
"learning_rate": 4.101614429000857e-06,
|
1954 |
+
"loss": 0.0026,
|
1955 |
+
"step": 270
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 2.1338582677165356,
|
1959 |
+
"grad_norm": 0.13400611281394958,
|
1960 |
+
"learning_rate": 4.033446592777558e-06,
|
1961 |
+
"loss": 0.0045,
|
1962 |
+
"step": 271
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 2.141732283464567,
|
1966 |
+
"grad_norm": 0.08963260799646378,
|
1967 |
+
"learning_rate": 3.965706588158865e-06,
|
1968 |
+
"loss": 0.002,
|
1969 |
+
"step": 272
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 2.1496062992125986,
|
1973 |
+
"grad_norm": 0.07362519204616547,
|
1974 |
+
"learning_rate": 3.89839927244058e-06,
|
1975 |
+
"loss": 0.0008,
|
1976 |
+
"step": 273
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 2.15748031496063,
|
1980 |
+
"grad_norm": 0.12438540160655975,
|
1981 |
+
"learning_rate": 3.8315294718925656e-06,
|
1982 |
+
"loss": 0.0032,
|
1983 |
+
"step": 274
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 2.1653543307086616,
|
1987 |
+
"grad_norm": 0.07505560666322708,
|
1988 |
+
"learning_rate": 3.7651019814126656e-06,
|
1989 |
+
"loss": 0.0011,
|
1990 |
+
"step": 275
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 2.173228346456693,
|
1994 |
+
"grad_norm": 0.24100656807422638,
|
1995 |
+
"learning_rate": 3.6991215641828903e-06,
|
1996 |
+
"loss": 0.0039,
|
1997 |
+
"step": 276
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 2.1811023622047245,
|
2001 |
+
"grad_norm": 0.08774268627166748,
|
2002 |
+
"learning_rate": 3.6335929513278667e-06,
|
2003 |
+
"loss": 0.0021,
|
2004 |
+
"step": 277
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 2.188976377952756,
|
2008 |
+
"grad_norm": 0.06761056184768677,
|
2009 |
+
"learning_rate": 3.568520841575601e-06,
|
2010 |
+
"loss": 0.0004,
|
2011 |
+
"step": 278
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 2.1968503937007875,
|
2015 |
+
"grad_norm": 0.514453113079071,
|
2016 |
+
"learning_rate": 3.5039099009205503e-06,
|
2017 |
+
"loss": 0.002,
|
2018 |
+
"step": 279
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 2.204724409448819,
|
2022 |
+
"grad_norm": 0.1681102067232132,
|
2023 |
+
"learning_rate": 3.439764762289051e-06,
|
2024 |
+
"loss": 0.0049,
|
2025 |
+
"step": 280
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 2.2125984251968505,
|
2029 |
+
"grad_norm": 0.46447646617889404,
|
2030 |
+
"learning_rate": 3.376090025207115e-06,
|
2031 |
+
"loss": 0.0037,
|
2032 |
+
"step": 281
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 2.220472440944882,
|
2036 |
+
"grad_norm": 0.09738212823867798,
|
2037 |
+
"learning_rate": 3.312890255470609e-06,
|
2038 |
+
"loss": 0.0018,
|
2039 |
+
"step": 282
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 2.2283464566929134,
|
2043 |
+
"grad_norm": 0.12760388851165771,
|
2044 |
+
"learning_rate": 3.250169984817897e-06,
|
2045 |
+
"loss": 0.0022,
|
2046 |
+
"step": 283
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 2.236220472440945,
|
2050 |
+
"grad_norm": 0.05433168262243271,
|
2051 |
+
"learning_rate": 3.187933710604847e-06,
|
2052 |
+
"loss": 0.0005,
|
2053 |
+
"step": 284
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 2.2440944881889764,
|
2057 |
+
"grad_norm": 0.06812359392642975,
|
2058 |
+
"learning_rate": 3.1261858954823798e-06,
|
2059 |
+
"loss": 0.0007,
|
2060 |
+
"step": 285
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 2.251968503937008,
|
2064 |
+
"grad_norm": 0.44168326258659363,
|
2065 |
+
"learning_rate": 3.064930967076477e-06,
|
2066 |
+
"loss": 0.0052,
|
2067 |
+
"step": 286
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 2.2598425196850394,
|
2071 |
+
"grad_norm": 0.4508403241634369,
|
2072 |
+
"learning_rate": 3.0041733176706668e-06,
|
2073 |
+
"loss": 0.0049,
|
2074 |
+
"step": 287
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 2.267716535433071,
|
2078 |
+
"grad_norm": 0.00029889008146710694,
|
2079 |
+
"learning_rate": 2.943917303891107e-06,
|
2080 |
+
"loss": 0.0,
|
2081 |
+
"step": 288
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 2.2755905511811023,
|
2085 |
+
"grad_norm": 0.16293245553970337,
|
2086 |
+
"learning_rate": 2.8841672463941827e-06,
|
2087 |
+
"loss": 0.0052,
|
2088 |
+
"step": 289
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 2.283464566929134,
|
2092 |
+
"grad_norm": 0.0034355763345956802,
|
2093 |
+
"learning_rate": 2.8249274295566863e-06,
|
2094 |
+
"loss": 0.0,
|
2095 |
+
"step": 290
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 2.2913385826771653,
|
2099 |
+
"grad_norm": 0.41321080923080444,
|
2100 |
+
"learning_rate": 2.766202101168628e-06,
|
2101 |
+
"loss": 0.0042,
|
2102 |
+
"step": 291
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 2.2992125984251968,
|
2106 |
+
"grad_norm": 0.05302264913916588,
|
2107 |
+
"learning_rate": 2.7079954721286108e-06,
|
2108 |
+
"loss": 0.0008,
|
2109 |
+
"step": 292
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 2.3070866141732282,
|
2113 |
+
"grad_norm": 0.16997075080871582,
|
2114 |
+
"learning_rate": 2.6503117161419246e-06,
|
2115 |
+
"loss": 0.0049,
|
2116 |
+
"step": 293
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 2.3149606299212597,
|
2120 |
+
"grad_norm": 0.15489016473293304,
|
2121 |
+
"learning_rate": 2.5931549694212545e-06,
|
2122 |
+
"loss": 0.0029,
|
2123 |
+
"step": 294
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 2.322834645669291,
|
2127 |
+
"grad_norm": 0.040922824293375015,
|
2128 |
+
"learning_rate": 2.536529330390095e-06,
|
2129 |
+
"loss": 0.0003,
|
2130 |
+
"step": 295
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 2.3307086614173227,
|
2134 |
+
"grad_norm": 0.15096415579319,
|
2135 |
+
"learning_rate": 2.480438859388873e-06,
|
2136 |
+
"loss": 0.0037,
|
2137 |
+
"step": 296
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 2.338582677165354,
|
2141 |
+
"grad_norm": 0.05358278378844261,
|
2142 |
+
"learning_rate": 2.424887578383799e-06,
|
2143 |
+
"loss": 0.0004,
|
2144 |
+
"step": 297
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 2.3464566929133857,
|
2148 |
+
"grad_norm": 0.16193096339702606,
|
2149 |
+
"learning_rate": 2.36987947067848e-06,
|
2150 |
+
"loss": 0.0025,
|
2151 |
+
"step": 298
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 2.354330708661417,
|
2155 |
+
"grad_norm": 0.10353274643421173,
|
2156 |
+
"learning_rate": 2.3154184806282863e-06,
|
2157 |
+
"loss": 0.0021,
|
2158 |
+
"step": 299
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 2.362204724409449,
|
2162 |
+
"grad_norm": 0.10735179483890533,
|
2163 |
+
"learning_rate": 2.261508513357532e-06,
|
2164 |
+
"loss": 0.0035,
|
2165 |
+
"step": 300
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 2.3700787401574805,
|
2169 |
+
"grad_norm": 0.18752367794513702,
|
2170 |
+
"learning_rate": 2.208153434479442e-06,
|
2171 |
+
"loss": 0.0039,
|
2172 |
+
"step": 301
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 2.3700787401574805,
|
2176 |
+
"eval_loss": 0.30320534110069275,
|
2177 |
+
"eval_runtime": 6.5784,
|
2178 |
+
"eval_samples_per_second": 24.778,
|
2179 |
+
"eval_steps_per_second": 3.192,
|
2180 |
+
"step": 301
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 2.377952755905512,
|
2184 |
+
"grad_norm": 0.13881297409534454,
|
2185 |
+
"learning_rate": 2.155357069818995e-06,
|
2186 |
+
"loss": 0.0032,
|
2187 |
+
"step": 302
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 2.3858267716535435,
|
2191 |
+
"grad_norm": 0.09920285642147064,
|
2192 |
+
"learning_rate": 2.1031232051385606e-06,
|
2193 |
+
"loss": 0.0021,
|
2194 |
+
"step": 303
|
2195 |
+
},
|
2196 |
+
{
|
2197 |
+
"epoch": 2.393700787401575,
|
2198 |
+
"grad_norm": 0.37194201350212097,
|
2199 |
+
"learning_rate": 2.0514555858664663e-06,
|
2200 |
+
"loss": 0.0045,
|
2201 |
+
"step": 304
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 2.4015748031496065,
|
2205 |
+
"grad_norm": 0.10560385882854462,
|
2206 |
+
"learning_rate": 2.000357916828428e-06,
|
2207 |
+
"loss": 0.0011,
|
2208 |
+
"step": 305
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 2.409448818897638,
|
2212 |
+
"grad_norm": 0.33549824357032776,
|
2213 |
+
"learning_rate": 1.949833861981877e-06,
|
2214 |
+
"loss": 0.0039,
|
2215 |
+
"step": 306
|
2216 |
+
},
|
2217 |
+
{
|
2218 |
+
"epoch": 2.4173228346456694,
|
2219 |
+
"grad_norm": 0.3969619870185852,
|
2220 |
+
"learning_rate": 1.8998870441532569e-06,
|
2221 |
+
"loss": 0.0027,
|
2222 |
+
"step": 307
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 2.425196850393701,
|
2226 |
+
"grad_norm": 0.081158846616745,
|
2227 |
+
"learning_rate": 1.8505210447782418e-06,
|
2228 |
+
"loss": 0.0011,
|
2229 |
+
"step": 308
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 2.4330708661417324,
|
2233 |
+
"grad_norm": 0.28652095794677734,
|
2234 |
+
"learning_rate": 1.8017394036449276e-06,
|
2235 |
+
"loss": 0.0038,
|
2236 |
+
"step": 309
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 2.440944881889764,
|
2240 |
+
"grad_norm": 0.0656951516866684,
|
2241 |
+
"learning_rate": 1.7535456186400123e-06,
|
2242 |
+
"loss": 0.001,
|
2243 |
+
"step": 310
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"epoch": 2.4488188976377954,
|
2247 |
+
"grad_norm": 0.14871421456336975,
|
2248 |
+
"learning_rate": 1.7059431454979825e-06,
|
2249 |
+
"loss": 0.0027,
|
2250 |
+
"step": 311
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 2.456692913385827,
|
2254 |
+
"grad_norm": 0.25429457426071167,
|
2255 |
+
"learning_rate": 1.6589353975533174e-06,
|
2256 |
+
"loss": 0.0012,
|
2257 |
+
"step": 312
|
2258 |
+
},
|
2259 |
+
{
|
2260 |
+
"epoch": 2.4645669291338583,
|
2261 |
+
"grad_norm": 0.06939385086297989,
|
2262 |
+
"learning_rate": 1.6125257454957365e-06,
|
2263 |
+
"loss": 0.0008,
|
2264 |
+
"step": 313
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 2.47244094488189,
|
2268 |
+
"grad_norm": 0.15781065821647644,
|
2269 |
+
"learning_rate": 1.5667175171285054e-06,
|
2270 |
+
"loss": 0.003,
|
2271 |
+
"step": 314
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 2.4803149606299213,
|
2275 |
+
"grad_norm": 0.08229056000709534,
|
2276 |
+
"learning_rate": 1.5215139971298131e-06,
|
2277 |
+
"loss": 0.0015,
|
2278 |
+
"step": 315
|
2279 |
+
},
|
2280 |
+
{
|
2281 |
+
"epoch": 2.4881889763779528,
|
2282 |
+
"grad_norm": 0.16827985644340515,
|
2283 |
+
"learning_rate": 1.4769184268172465e-06,
|
2284 |
+
"loss": 0.0032,
|
2285 |
+
"step": 316
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 2.4960629921259843,
|
2289 |
+
"grad_norm": 0.12261717021465302,
|
2290 |
+
"learning_rate": 1.4329340039153738e-06,
|
2291 |
+
"loss": 0.0022,
|
2292 |
+
"step": 317
|
2293 |
+
},
|
2294 |
+
{
|
2295 |
+
"epoch": 2.5039370078740157,
|
2296 |
+
"grad_norm": 0.1208304911851883,
|
2297 |
+
"learning_rate": 1.3895638823264447e-06,
|
2298 |
+
"loss": 0.002,
|
2299 |
+
"step": 318
|
2300 |
+
},
|
2301 |
+
{
|
2302 |
+
"epoch": 2.5118110236220472,
|
2303 |
+
"grad_norm": 0.22991932928562164,
|
2304 |
+
"learning_rate": 1.3468111719042497e-06,
|
2305 |
+
"loss": 0.0027,
|
2306 |
+
"step": 319
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 2.5196850393700787,
|
2310 |
+
"grad_norm": 0.468462198972702,
|
2311 |
+
"learning_rate": 1.3046789382311132e-06,
|
2312 |
+
"loss": 0.0042,
|
2313 |
+
"step": 320
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 2.52755905511811,
|
2317 |
+
"grad_norm": 0.029908303171396255,
|
2318 |
+
"learning_rate": 1.2631702023980997e-06,
|
2319 |
+
"loss": 0.0002,
|
2320 |
+
"step": 321
|
2321 |
+
},
|
2322 |
+
{
|
2323 |
+
"epoch": 2.5354330708661417,
|
2324 |
+
"grad_norm": 0.07678980380296707,
|
2325 |
+
"learning_rate": 1.2222879407883592e-06,
|
2326 |
+
"loss": 0.0014,
|
2327 |
+
"step": 322
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 2.543307086614173,
|
2331 |
+
"grad_norm": 0.13547496497631073,
|
2332 |
+
"learning_rate": 1.182035084863724e-06,
|
2333 |
+
"loss": 0.0017,
|
2334 |
+
"step": 323
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 2.5511811023622046,
|
2338 |
+
"grad_norm": 0.15075382590293884,
|
2339 |
+
"learning_rate": 1.1424145209545079e-06,
|
2340 |
+
"loss": 0.0059,
|
2341 |
+
"step": 324
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 2.559055118110236,
|
2345 |
+
"grad_norm": 0.1271948516368866,
|
2346 |
+
"learning_rate": 1.1034290900525279e-06,
|
2347 |
+
"loss": 0.0021,
|
2348 |
+
"step": 325
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 2.5669291338582676,
|
2352 |
+
"grad_norm": 0.11441997438669205,
|
2353 |
+
"learning_rate": 1.065081587607406e-06,
|
2354 |
+
"loss": 0.0022,
|
2355 |
+
"step": 326
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 2.574803149606299,
|
2359 |
+
"grad_norm": 0.13326182961463928,
|
2360 |
+
"learning_rate": 1.0273747633261144e-06,
|
2361 |
+
"loss": 0.004,
|
2362 |
+
"step": 327
|
2363 |
+
},
|
2364 |
+
{
|
2365 |
+
"epoch": 2.5826771653543306,
|
2366 |
+
"grad_norm": 0.07804345339536667,
|
2367 |
+
"learning_rate": 9.903113209758098e-07,
|
2368 |
+
"loss": 0.0018,
|
2369 |
+
"step": 328
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 2.590551181102362,
|
2373 |
+
"grad_norm": 0.0012728713918477297,
|
2374 |
+
"learning_rate": 9.538939181899565e-07,
|
2375 |
+
"loss": 0.0,
|
2376 |
+
"step": 329
|
2377 |
+
},
|
2378 |
+
{
|
2379 |
+
"epoch": 2.5984251968503935,
|
2380 |
+
"grad_norm": 0.06427028775215149,
|
2381 |
+
"learning_rate": 9.181251662777668e-07,
|
2382 |
+
"loss": 0.0007,
|
2383 |
+
"step": 330
|
2384 |
+
},
|
2385 |
+
{
|
2386 |
+
"epoch": 2.606299212598425,
|
2387 |
+
"grad_norm": 0.1923428475856781,
|
2388 |
+
"learning_rate": 8.830076300369517e-07,
|
2389 |
+
"loss": 0.006,
|
2390 |
+
"step": 331
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 2.6141732283464565,
|
2394 |
+
"grad_norm": 0.33056169748306274,
|
2395 |
+
"learning_rate": 8.485438275698154e-07,
|
2396 |
+
"loss": 0.0024,
|
2397 |
+
"step": 332
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 2.622047244094488,
|
2401 |
+
"grad_norm": 0.13692541420459747,
|
2402 |
+
"learning_rate": 8.14736230102694e-07,
|
2403 |
+
"loss": 0.0019,
|
2404 |
+
"step": 333
|
2405 |
+
},
|
2406 |
+
{
|
2407 |
+
"epoch": 2.6299212598425195,
|
2408 |
+
"grad_norm": 0.11543405055999756,
|
2409 |
+
"learning_rate": 7.815872618087506e-07,
|
2410 |
+
"loss": 0.003,
|
2411 |
+
"step": 334
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 2.637795275590551,
|
2415 |
+
"grad_norm": 0.20871274173259735,
|
2416 |
+
"learning_rate": 7.490992996341662e-07,
|
2417 |
+
"loss": 0.0022,
|
2418 |
+
"step": 335
|
2419 |
+
},
|
2420 |
+
{
|
2421 |
+
"epoch": 2.6456692913385824,
|
2422 |
+
"grad_norm": 0.1506434828042984,
|
2423 |
+
"learning_rate": 7.17274673127677e-07,
|
2424 |
+
"loss": 0.0034,
|
2425 |
+
"step": 336
|
2426 |
+
},
|
2427 |
+
{
|
2428 |
+
"epoch": 2.653543307086614,
|
2429 |
+
"grad_norm": 0.1000061109662056,
|
2430 |
+
"learning_rate": 6.861156642735578e-07,
|
2431 |
+
"loss": 0.0015,
|
2432 |
+
"step": 337
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 2.661417322834646,
|
2436 |
+
"grad_norm": 0.04730301722884178,
|
2437 |
+
"learning_rate": 6.556245073279777e-07,
|
2438 |
+
"loss": 0.0003,
|
2439 |
+
"step": 338
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 2.6692913385826773,
|
2443 |
+
"grad_norm": 0.07712409645318985,
|
2444 |
+
"learning_rate": 6.258033886587911e-07,
|
2445 |
+
"loss": 0.0006,
|
2446 |
+
"step": 339
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 2.677165354330709,
|
2450 |
+
"grad_norm": 0.12951001524925232,
|
2451 |
+
"learning_rate": 5.966544465887803e-07,
|
2452 |
+
"loss": 0.0022,
|
2453 |
+
"step": 340
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 2.6850393700787403,
|
2457 |
+
"grad_norm": 0.3450707495212555,
|
2458 |
+
"learning_rate": 5.681797712423099e-07,
|
2459 |
+
"loss": 0.0031,
|
2460 |
+
"step": 341
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 2.6929133858267718,
|
2464 |
+
"grad_norm": 0.11356323957443237,
|
2465 |
+
"learning_rate": 5.403814043954592e-07,
|
2466 |
+
"loss": 0.0016,
|
2467 |
+
"step": 342
|
2468 |
+
},
|
2469 |
+
{
|
2470 |
+
"epoch": 2.7007874015748032,
|
2471 |
+
"grad_norm": 0.40962764620780945,
|
2472 |
+
"learning_rate": 5.132613393296293e-07,
|
2473 |
+
"loss": 0.0022,
|
2474 |
+
"step": 343
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 2.7086614173228347,
|
2478 |
+
"grad_norm": 0.0026160525158047676,
|
2479 |
+
"learning_rate": 4.868215206885918e-07,
|
2480 |
+
"loss": 0.0,
|
2481 |
+
"step": 344
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 2.7086614173228347,
|
2485 |
+
"eval_loss": 0.3102666437625885,
|
2486 |
+
"eval_runtime": 7.3029,
|
2487 |
+
"eval_samples_per_second": 22.32,
|
2488 |
+
"eval_steps_per_second": 2.876,
|
2489 |
+
"step": 344
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 2.716535433070866,
|
2493 |
+
"grad_norm": 0.2460733950138092,
|
2494 |
+
"learning_rate": 4.61063844339068e-07,
|
2495 |
+
"loss": 0.0044,
|
2496 |
+
"step": 345
|
2497 |
+
},
|
2498 |
+
{
|
2499 |
+
"epoch": 2.7244094488188977,
|
2500 |
+
"grad_norm": 0.11104279011487961,
|
2501 |
+
"learning_rate": 4.359901572347758e-07,
|
2502 |
+
"loss": 0.0031,
|
2503 |
+
"step": 346
|
2504 |
+
},
|
2505 |
+
{
|
2506 |
+
"epoch": 2.732283464566929,
|
2507 |
+
"grad_norm": 0.288809210062027,
|
2508 |
+
"learning_rate": 4.116022572839984e-07,
|
2509 |
+
"loss": 0.0023,
|
2510 |
+
"step": 347
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 2.7401574803149606,
|
2514 |
+
"grad_norm": 0.2904239892959595,
|
2515 |
+
"learning_rate": 3.879018932206624e-07,
|
2516 |
+
"loss": 0.001,
|
2517 |
+
"step": 348
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 2.748031496062992,
|
2521 |
+
"grad_norm": 0.5172310471534729,
|
2522 |
+
"learning_rate": 3.6489076447894456e-07,
|
2523 |
+
"loss": 0.0023,
|
2524 |
+
"step": 349
|
2525 |
+
},
|
2526 |
+
{
|
2527 |
+
"epoch": 2.7559055118110236,
|
2528 |
+
"grad_norm": 0.555241048336029,
|
2529 |
+
"learning_rate": 3.425705210714192e-07,
|
2530 |
+
"loss": 0.0026,
|
2531 |
+
"step": 350
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"epoch": 2.763779527559055,
|
2535 |
+
"grad_norm": 0.12381427735090256,
|
2536 |
+
"learning_rate": 3.2094276347073626e-07,
|
2537 |
+
"loss": 0.002,
|
2538 |
+
"step": 351
|
2539 |
+
},
|
2540 |
+
{
|
2541 |
+
"epoch": 2.7716535433070866,
|
2542 |
+
"grad_norm": 0.16744810342788696,
|
2543 |
+
"learning_rate": 3.000090424948665e-07,
|
2544 |
+
"loss": 0.0036,
|
2545 |
+
"step": 352
|
2546 |
+
},
|
2547 |
+
{
|
2548 |
+
"epoch": 2.779527559055118,
|
2549 |
+
"grad_norm": 0.512416422367096,
|
2550 |
+
"learning_rate": 2.7977085919589253e-07,
|
2551 |
+
"loss": 0.0026,
|
2552 |
+
"step": 353
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 2.7874015748031495,
|
2556 |
+
"grad_norm": 0.18864978849887848,
|
2557 |
+
"learning_rate": 2.602296647523861e-07,
|
2558 |
+
"loss": 0.0025,
|
2559 |
+
"step": 354
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 2.795275590551181,
|
2563 |
+
"grad_norm": 0.012189923785626888,
|
2564 |
+
"learning_rate": 2.413868603653413e-07,
|
2565 |
+
"loss": 0.0001,
|
2566 |
+
"step": 355
|
2567 |
+
},
|
2568 |
+
{
|
2569 |
+
"epoch": 2.8031496062992125,
|
2570 |
+
"grad_norm": 0.10027037560939789,
|
2571 |
+
"learning_rate": 2.2324379715770728e-07,
|
2572 |
+
"loss": 0.0011,
|
2573 |
+
"step": 356
|
2574 |
+
},
|
2575 |
+
{
|
2576 |
+
"epoch": 2.811023622047244,
|
2577 |
+
"grad_norm": 0.10117685794830322,
|
2578 |
+
"learning_rate": 2.0580177607750663e-07,
|
2579 |
+
"loss": 0.0036,
|
2580 |
+
"step": 357
|
2581 |
+
},
|
2582 |
+
{
|
2583 |
+
"epoch": 2.8188976377952755,
|
2584 |
+
"grad_norm": 0.1535252332687378,
|
2585 |
+
"learning_rate": 1.890620478045435e-07,
|
2586 |
+
"loss": 0.0044,
|
2587 |
+
"step": 358
|
2588 |
+
},
|
2589 |
+
{
|
2590 |
+
"epoch": 2.826771653543307,
|
2591 |
+
"grad_norm": 0.39140409231185913,
|
2592 |
+
"learning_rate": 1.7302581266073537e-07,
|
2593 |
+
"loss": 0.0037,
|
2594 |
+
"step": 359
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 2.8346456692913384,
|
2598 |
+
"grad_norm": 0.18143348395824432,
|
2599 |
+
"learning_rate": 1.5769422052403172e-07,
|
2600 |
+
"loss": 0.0033,
|
2601 |
+
"step": 360
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 2.84251968503937,
|
2605 |
+
"grad_norm": 0.6282801032066345,
|
2606 |
+
"learning_rate": 1.4306837074597235e-07,
|
2607 |
+
"loss": 0.0096,
|
2608 |
+
"step": 361
|
2609 |
+
},
|
2610 |
+
{
|
2611 |
+
"epoch": 2.850393700787402,
|
2612 |
+
"grad_norm": 0.3672868311405182,
|
2613 |
+
"learning_rate": 1.2914931207285154e-07,
|
2614 |
+
"loss": 0.0014,
|
2615 |
+
"step": 362
|
2616 |
+
},
|
2617 |
+
{
|
2618 |
+
"epoch": 2.8582677165354333,
|
2619 |
+
"grad_norm": 0.13403712213039398,
|
2620 |
+
"learning_rate": 1.1593804257052143e-07,
|
2621 |
+
"loss": 0.0046,
|
2622 |
+
"step": 363
|
2623 |
+
},
|
2624 |
+
{
|
2625 |
+
"epoch": 2.866141732283465,
|
2626 |
+
"grad_norm": 0.004047819878906012,
|
2627 |
+
"learning_rate": 1.0343550955282278e-07,
|
2628 |
+
"loss": 0.0,
|
2629 |
+
"step": 364
|
2630 |
+
},
|
2631 |
+
{
|
2632 |
+
"epoch": 2.8740157480314963,
|
2633 |
+
"grad_norm": 0.3351942002773285,
|
2634 |
+
"learning_rate": 9.164260951366021e-08,
|
2635 |
+
"loss": 0.0024,
|
2636 |
+
"step": 365
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 2.8818897637795278,
|
2640 |
+
"grad_norm": 0.09759978204965591,
|
2641 |
+
"learning_rate": 8.056018806271937e-08,
|
2642 |
+
"loss": 0.002,
|
2643 |
+
"step": 366
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 2.8897637795275593,
|
2647 |
+
"grad_norm": 0.06213594600558281,
|
2648 |
+
"learning_rate": 7.018903986483083e-08,
|
2649 |
+
"loss": 0.0009,
|
2650 |
+
"step": 367
|
2651 |
+
},
|
2652 |
+
{
|
2653 |
+
"epoch": 2.8976377952755907,
|
2654 |
+
"grad_norm": 0.07074209302663803,
|
2655 |
+
"learning_rate": 6.052990858298801e-08,
|
2656 |
+
"loss": 0.0009,
|
2657 |
+
"step": 368
|
2658 |
+
},
|
2659 |
+
{
|
2660 |
+
"epoch": 2.905511811023622,
|
2661 |
+
"grad_norm": 0.271335631608963,
|
2662 |
+
"learning_rate": 5.158348682502756e-08,
|
2663 |
+
"loss": 0.0037,
|
2664 |
+
"step": 369
|
2665 |
+
},
|
2666 |
+
{
|
2667 |
+
"epoch": 2.9133858267716537,
|
2668 |
+
"grad_norm": 0.09063868969678879,
|
2669 |
+
"learning_rate": 4.335041609396018e-08,
|
2670 |
+
"loss": 0.0014,
|
2671 |
+
"step": 370
|
2672 |
+
},
|
2673 |
+
{
|
2674 |
+
"epoch": 2.921259842519685,
|
2675 |
+
"grad_norm": 0.818594753742218,
|
2676 |
+
"learning_rate": 3.5831286741973006e-08,
|
2677 |
+
"loss": 0.0033,
|
2678 |
+
"step": 371
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 2.9291338582677167,
|
2682 |
+
"grad_norm": 0.09543661028146744,
|
2683 |
+
"learning_rate": 2.902663792810012e-08,
|
2684 |
+
"loss": 0.0015,
|
2685 |
+
"step": 372
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 2.937007874015748,
|
2689 |
+
"grad_norm": 0.13098907470703125,
|
2690 |
+
"learning_rate": 2.293695757956571e-08,
|
2691 |
+
"loss": 0.0037,
|
2692 |
+
"step": 373
|
2693 |
+
},
|
2694 |
+
{
|
2695 |
+
"epoch": 2.9448818897637796,
|
2696 |
+
"grad_norm": 0.5491423010826111,
|
2697 |
+
"learning_rate": 1.7562682356786488e-08,
|
2698 |
+
"loss": 0.004,
|
2699 |
+
"step": 374
|
2700 |
+
},
|
2701 |
+
{
|
2702 |
+
"epoch": 2.952755905511811,
|
2703 |
+
"grad_norm": 0.08357255905866623,
|
2704 |
+
"learning_rate": 1.290419762207007e-08,
|
2705 |
+
"loss": 0.0015,
|
2706 |
+
"step": 375
|
2707 |
+
},
|
2708 |
+
{
|
2709 |
+
"epoch": 2.9606299212598426,
|
2710 |
+
"grad_norm": 0.24269114434719086,
|
2711 |
+
"learning_rate": 8.961837411982643e-09,
|
2712 |
+
"loss": 0.0028,
|
2713 |
+
"step": 376
|
2714 |
+
},
|
2715 |
+
{
|
2716 |
+
"epoch": 2.968503937007874,
|
2717 |
+
"grad_norm": 0.1084604412317276,
|
2718 |
+
"learning_rate": 5.735884413391457e-09,
|
2719 |
+
"loss": 0.0022,
|
2720 |
+
"step": 377
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 2.9763779527559056,
|
2724 |
+
"grad_norm": 0.09172981232404709,
|
2725 |
+
"learning_rate": 3.226569943197699e-09,
|
2726 |
+
"loss": 0.0022,
|
2727 |
+
"step": 378
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 2.984251968503937,
|
2731 |
+
"grad_norm": 0.1312946230173111,
|
2732 |
+
"learning_rate": 1.4340739317497688e-09,
|
2733 |
+
"loss": 0.002,
|
2734 |
+
"step": 379
|
2735 |
+
},
|
2736 |
+
{
|
2737 |
+
"epoch": 2.9921259842519685,
|
2738 |
+
"grad_norm": 0.0002817026397679001,
|
2739 |
+
"learning_rate": 3.585249099435917e-10,
|
2740 |
+
"loss": 0.0,
|
2741 |
+
"step": 380
|
2742 |
+
},
|
2743 |
+
{
|
2744 |
+
"epoch": 3.0,
|
2745 |
+
"grad_norm": 0.2318553477525711,
|
2746 |
+
"learning_rate": 0.0,
|
2747 |
+
"loss": 0.0007,
|
2748 |
+
"step": 381
|
2749 |
+
}
|
2750 |
+
],
|
2751 |
+
"logging_steps": 1,
|
2752 |
+
"max_steps": 381,
|
2753 |
+
"num_input_tokens_seen": 0,
|
2754 |
+
"num_train_epochs": 3,
|
2755 |
+
"save_steps": 127,
|
2756 |
+
"stateful_callbacks": {
|
2757 |
+
"TrainerControl": {
|
2758 |
+
"args": {
|
2759 |
+
"should_epoch_stop": false,
|
2760 |
+
"should_evaluate": false,
|
2761 |
+
"should_log": false,
|
2762 |
+
"should_save": true,
|
2763 |
+
"should_training_stop": true
|
2764 |
+
},
|
2765 |
+
"attributes": {}
|
2766 |
+
}
|
2767 |
+
},
|
2768 |
+
"total_flos": 3.9261813209667994e+17,
|
2769 |
+
"train_batch_size": 128,
|
2770 |
+
"trial_name": null,
|
2771 |
+
"trial_params": null
|
2772 |
+
}
|
checkpoint-381/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:033fc2cc0303528d4e9ad523b3fd63b75e963b86dba301044379df1d98e6c394
|
3 |
+
size 10744
|
checkpoint-381/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|