--- license: mit --- # Amphion Singing Voice Conversion Pretrained Models ## Quick Start We provide a [DiffWaveNetSVC](https://github.com/open-mmlab/Amphion/tree/main/egs/svc/MultipleContentsSVC) pretrained checkpoint for you to play. Specially, it is trained under the real-world vocalist data (total duration: 6.16 hours), including the following 15 professional singers: | Singer | Language | Training Duration (mins) | | :-----------------: | :------: | :----------------------: | | David Tao 陶喆 | Chinese | 45.51 | | Eason Chan 陈奕迅 | Chinese | 43.36 | | Feng Wang 汪峰 | Chinese | 41.08 | | Jian Li 李健 | Chinese | 38.90 | | John Mayer | English | 30.83 | | Adele | English | 27.23 | | Ying Na 那英 | Chinese | 27.02 | | Yijie Shi 石倚洁 | Chinese | 24.93 | | Jacky Cheung 张学友 | Chinese | 18.31 | | Taylor Swift | English | 18.31 | | Faye Wong 王菲 | English | 16.78 | | Michael Jackson | English | 15.13 | | Tsai Chin 蔡琴 | Chinese | 10.12 | | Bruno Mars | English | 6.29 | | Beyonce | English | 6.06 | To make these singers sing the songs you want to listen to, just run the following commands: ### Step1: Download the acoustics model checkpoint ```bash git lfs install git clone https://huggingface.co./amphion/singing_voice_conversion ``` ### Step2: Download the vocoder checkpoint ```bash git clone https://huggingface.co./amphion/BigVGAN_singing_bigdata ``` ### Step3: Clone the Amphion's Source Code of GitHub ```bash git clone https://github.com/open-mmlab/Amphion.git ``` ### Step4: Download ContentVec Checkpoint You could download **ContentVec** Checkpoint from [this repo](https://github.com/auspicious3000/contentvec). In this pretrained model, we used `checkpoint_best_legacy_500.pt`, which is the legacy ContentVec with 500 classes. ### Step5: Specify the checkpoints' path Use the soft link to specify the downloaded checkpoints: ```bash cd Amphion mkdir -p ckpts/svc ln -s "$(realpath ../singing_voice_conversion/vocalist_l1_contentvec+whisper)" ckpts/svc/vocalist_l1_contentvec+whisper ln -s "$(realpath ../BigVGAN_singing_bigdata/bigvgan_singing)" pretrained/bigvgan_singing ``` Also, you need to move `checkpoint_best_legacy_500.pt` you downloaded at **Step4** into `Amphion/pretrained/contentvec`. ### Step6: Conversion You can follow [this recipe](https://github.com/open-mmlab/Amphion/tree/main/egs/svc/MultipleContentsSVC#4-inferenceconversion) to conduct the conversion. For example, if you want to make Taylor Swift sing the songs in the `[Your Audios Folder]`, just run: ```bash sh egs/svc/MultipleContentsSVC/run.sh --stage 3 --gpu "0" \ --config "ckpts/svc/vocalist_l1_contentvec+whisper/args.json" \ --infer_expt_dir "ckpts/svc/vocalist_l1_contentvec+whisper" \ --infer_output_dir "ckpts/svc/vocalist_l1_contentvec+whisper/result" \ --infer_source_audio_dir [Your Audios Folder] \ --infer_vocoder_dir "pretrained/bigvgan_singing" \ --infer_target_speaker "vocalist_l1_TaylorSwift" \ --infer_key_shift "autoshift" ``` **Note**: The supported `infer_target_speaker` values can be seen [here](https://huggingface.co./amphion/singing_voice_conversion/blob/main/vocalist_l1_contentvec%2Bwhisper/singers.json). ## Citaions ```bibtex @article{zhang2023leveraging, title={Leveraging Content-based Features from Multiple Acoustic Models for Singing Voice Conversion}, author={Zhang, Xueyao and Gu, Yicheng and Chen, Haopeng and Fang, Zihao and Zou, Lexiao and Xue, Liumeng and Wu, Zhizheng}, journal={Machine Learning for Audio Worshop, NeurIPS 2023}, year={2023} } ```