File size: 35,639 Bytes
cca29bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: l3cube-pune/indic-sentence-similarity-sbert
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Excuse me.
  sentences:
  - um pardon me
  - A man is opening mail.
  - The girls are indoors.
- source_sentence: Double pig.
  sentences:
  - Ah, triple pig!
  - a girl poses for camera
  - Girls dance together.
- source_sentence: People pose.
  sentences:
  - People are smiling.
  - I know a few old ones.
  - The boy fell off his bike.
- source_sentence: A man sings.
  sentences:
  - People singing
  - A man is playing golf.
  - The women are eating bread.
- source_sentence: Then he ran.
  sentences:
  - He then started to run.
  - A man plays the flute.
  - A couple sit on the couch
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 768
      type: sts-dev-768
    metrics:
    - type: pearson_cosine
      value: 0.8608857207512975
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8662860178080238
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.858692209351004
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8612472945208892
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.858472048314985
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8611276457994067
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8258747949887901
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8259736371824636
      name: Spearman Dot
    - type: pearson_max
      value: 0.8608857207512975
      name: Pearson Max
    - type: spearman_max
      value: 0.8662860178080238
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 512
      type: sts-dev-512
    metrics:
    - type: pearson_cosine
      value: 0.8594405198312016
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8648571300070264
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8574291650964095
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8598780673781499
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8574540367546871
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8600722932569861
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.822340474813523
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8226609928783558
      name: Spearman Dot
    - type: pearson_max
      value: 0.8594405198312016
      name: Pearson Max
    - type: spearman_max
      value: 0.8648571300070264
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 256
      type: sts-dev-256
    metrics:
    - type: pearson_cosine
      value: 0.8506120561071212
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8575982860981437
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.852829777566948
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8552667517015687
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8526934293405145
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8551077930316164
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7943956137623474
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7963976287579885
      name: Spearman Dot
    - type: pearson_max
      value: 0.852829777566948
      name: Pearson Max
    - type: spearman_max
      value: 0.8575982860981437
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 128
      type: sts-dev-128
    metrics:
    - type: pearson_cosine
      value: 0.8410977354989039
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.850480817077266
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8461619224798919
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8490393633313068
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8458138708136093
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.848719989437845
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7755878071062363
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7755629190322909
      name: Spearman Dot
    - type: pearson_max
      value: 0.8461619224798919
      name: Pearson Max
    - type: spearman_max
      value: 0.850480817077266
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 64
      type: sts-dev-64
    metrics:
    - type: pearson_cosine
      value: 0.8176550213032908
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8307913870285043
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8291830276998975
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8320477651805375
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8311109004860973
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8333955109708812
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7153413665605783
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7181274999679498
      name: Spearman Dot
    - type: pearson_max
      value: 0.8311109004860973
      name: Pearson Max
    - type: spearman_max
      value: 0.8333955109708812
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: 0.8491592809545866
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8568871215102605
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8572052385387118
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.856617432589014
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8568623186549655
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8567096295439565
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7968828934121807
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7879173370882538
      name: Spearman Dot
    - type: pearson_max
      value: 0.8572052385387118
      name: Pearson Max
    - type: spearman_max
      value: 0.8568871215102605
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: 0.8507070298067174
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8575370129160172
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8564033014649287
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8560352984315738
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8561906595447021
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8560701630452845
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7973312469719326
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7873345752731498
      name: Spearman Dot
    - type: pearson_max
      value: 0.8564033014649287
      name: Pearson Max
    - type: spearman_max
      value: 0.8575370129160172
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.8467375811334358
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8523459221020806
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8515524299355154
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8516309696270962
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8505975029491393
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8504082169041302
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7756647219222156
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7687165011432322
      name: Spearman Dot
    - type: pearson_max
      value: 0.8515524299355154
      name: Pearson Max
    - type: spearman_max
      value: 0.8523459221020806
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.8377317518267889
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.84715184876888
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.846568244977152
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8487991796570058
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8456229087328332
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.847227591472
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7502527212449147
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7415962106597614
      name: Spearman Dot
    - type: pearson_max
      value: 0.846568244977152
      name: Pearson Max
    - type: spearman_max
      value: 0.8487991796570058
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.8173604263806156
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8315612974155435
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8319781289166863
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8347311175148256
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8334921243463637
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8350960592133633
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6935445265890855
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6843746062699552
      name: Spearman Dot
    - type: pearson_max
      value: 0.8334921243463637
      name: Pearson Max
    - type: spearman_max
      value: 0.8350960592133633
      name: Spearman Max
---

# SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [l3cube-pune/indic-sentence-similarity-sbert](https://huggingface.co./l3cube-pune/indic-sentence-similarity-sbert) on the [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [l3cube-pune/indic-sentence-similarity-sbert](https://huggingface.co./l3cube-pune/indic-sentence-similarity-sbert) <!-- at revision b07ef91a96390f3e35ce94ddb42340861519bf07 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ammumadhu/indic-bert-nli-matryoshka")
# Run inference
sentences = [
    'Then he ran.',
    'He then started to run.',
    'A man plays the flute.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8609     |
| **spearman_cosine** | **0.8663** |
| pearson_manhattan   | 0.8587     |
| spearman_manhattan  | 0.8612     |
| pearson_euclidean   | 0.8585     |
| spearman_euclidean  | 0.8611     |
| pearson_dot         | 0.8259     |
| spearman_dot        | 0.826      |
| pearson_max         | 0.8609     |
| spearman_max        | 0.8663     |

#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8594     |
| **spearman_cosine** | **0.8649** |
| pearson_manhattan   | 0.8574     |
| spearman_manhattan  | 0.8599     |
| pearson_euclidean   | 0.8575     |
| spearman_euclidean  | 0.8601     |
| pearson_dot         | 0.8223     |
| spearman_dot        | 0.8227     |
| pearson_max         | 0.8594     |
| spearman_max        | 0.8649     |

#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8506     |
| **spearman_cosine** | **0.8576** |
| pearson_manhattan   | 0.8528     |
| spearman_manhattan  | 0.8553     |
| pearson_euclidean   | 0.8527     |
| spearman_euclidean  | 0.8551     |
| pearson_dot         | 0.7944     |
| spearman_dot        | 0.7964     |
| pearson_max         | 0.8528     |
| spearman_max        | 0.8576     |

#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8411     |
| **spearman_cosine** | **0.8505** |
| pearson_manhattan   | 0.8462     |
| spearman_manhattan  | 0.849      |
| pearson_euclidean   | 0.8458     |
| spearman_euclidean  | 0.8487     |
| pearson_dot         | 0.7756     |
| spearman_dot        | 0.7756     |
| pearson_max         | 0.8462     |
| spearman_max        | 0.8505     |

#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8177     |
| **spearman_cosine** | **0.8308** |
| pearson_manhattan   | 0.8292     |
| spearman_manhattan  | 0.832      |
| pearson_euclidean   | 0.8311     |
| spearman_euclidean  | 0.8334     |
| pearson_dot         | 0.7153     |
| spearman_dot        | 0.7181     |
| pearson_max         | 0.8311     |
| spearman_max        | 0.8334     |

#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8492     |
| **spearman_cosine** | **0.8569** |
| pearson_manhattan   | 0.8572     |
| spearman_manhattan  | 0.8566     |
| pearson_euclidean   | 0.8569     |
| spearman_euclidean  | 0.8567     |
| pearson_dot         | 0.7969     |
| spearman_dot        | 0.7879     |
| pearson_max         | 0.8572     |
| spearman_max        | 0.8569     |

#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8507     |
| **spearman_cosine** | **0.8575** |
| pearson_manhattan   | 0.8564     |
| spearman_manhattan  | 0.856      |
| pearson_euclidean   | 0.8562     |
| spearman_euclidean  | 0.8561     |
| pearson_dot         | 0.7973     |
| spearman_dot        | 0.7873     |
| pearson_max         | 0.8564     |
| spearman_max        | 0.8575     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8467     |
| **spearman_cosine** | **0.8523** |
| pearson_manhattan   | 0.8516     |
| spearman_manhattan  | 0.8516     |
| pearson_euclidean   | 0.8506     |
| spearman_euclidean  | 0.8504     |
| pearson_dot         | 0.7757     |
| spearman_dot        | 0.7687     |
| pearson_max         | 0.8516     |
| spearman_max        | 0.8523     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8377     |
| **spearman_cosine** | **0.8472** |
| pearson_manhattan   | 0.8466     |
| spearman_manhattan  | 0.8488     |
| pearson_euclidean   | 0.8456     |
| spearman_euclidean  | 0.8472     |
| pearson_dot         | 0.7503     |
| spearman_dot        | 0.7416     |
| pearson_max         | 0.8466     |
| spearman_max        | 0.8488     |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8174     |
| **spearman_cosine** | **0.8316** |
| pearson_manhattan   | 0.832      |
| spearman_manhattan  | 0.8347     |
| pearson_euclidean   | 0.8335     |
| spearman_euclidean  | 0.8351     |
| pearson_dot         | 0.6935     |
| spearman_dot        | 0.6844     |
| pearson_max         | 0.8335     |
| spearman_max        | 0.8351     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sentence-transformers/all-nli

* Dataset: [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 10,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                          | negative                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 18.8 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.84 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.39 tokens</li><li>max: 38 tokens</li></ul> |
* Samples:
  | anchor                                                                                                    | positive                                          | negative                                               |
  |:----------------------------------------------------------------------------------------------------------|:--------------------------------------------------|:-------------------------------------------------------|
  | <code>Side view of a female triathlete during the run.</code>                                             | <code>A woman runs</code>                         | <code>A man sits</code>                                |
  | <code>Confused person standing in the middle of the trolley tracks trying to figure out the signs.</code> | <code>A person is on the tracks.</code>           | <code>A man sits in an airplane.</code>                |
  | <code>A woman in a black shirt, jean shorts and white tennis shoes is bowling.</code>                     | <code>A woman is bowling in casual clothes</code> | <code>A woman bowling wins an outfit of clothes</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### sentence-transformers/all-nli

* Dataset: [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                         | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | string                                                                            |
  | details | <ul><li>min: 6 tokens</li><li>mean: 18.54 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.97 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.59 tokens</li><li>max: 29 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                         | positive                                                    | negative                                                |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
  | <code>Two women are embracing while holding to go packages.</code>                                                                                                             | <code>Two woman are holding packages.</code>                | <code>The men are fighting outside a deli.</code>       |
  | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code>        |
  | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code>                                                                    | <code>A man selling donuts to a customer.</code>            | <code>A woman drinks her coffee in a small cafe.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 0.3797 | 30   | 7.9432        | 4.2806 | 0.8509                      | 0.8570                      | 0.8633                      | 0.8311                     | 0.8644                      | -                            | -                            | -                            | -                           | -                            |
| 0.7595 | 60   | 6.1701        | 3.9498 | 0.8505                      | 0.8576                      | 0.8649                      | 0.8308                     | 0.8663                      | -                            | -                            | -                            | -                           | -                            |
| 1.0    | 79   | -             | -      | -                           | -                           | -                           | -                          | -                           | 0.8472                       | 0.8523                       | 0.8575                       | 0.8316                      | 0.8569                       |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->