File size: 35,639 Bytes
cca29bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: l3cube-pune/indic-sentence-similarity-sbert
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Excuse me.
sentences:
- um pardon me
- A man is opening mail.
- The girls are indoors.
- source_sentence: Double pig.
sentences:
- Ah, triple pig!
- a girl poses for camera
- Girls dance together.
- source_sentence: People pose.
sentences:
- People are smiling.
- I know a few old ones.
- The boy fell off his bike.
- source_sentence: A man sings.
sentences:
- People singing
- A man is playing golf.
- The women are eating bread.
- source_sentence: Then he ran.
sentences:
- He then started to run.
- A man plays the flute.
- A couple sit on the couch
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 768
type: sts-dev-768
metrics:
- type: pearson_cosine
value: 0.8608857207512975
name: Pearson Cosine
- type: spearman_cosine
value: 0.8662860178080238
name: Spearman Cosine
- type: pearson_manhattan
value: 0.858692209351004
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8612472945208892
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.858472048314985
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8611276457994067
name: Spearman Euclidean
- type: pearson_dot
value: 0.8258747949887901
name: Pearson Dot
- type: spearman_dot
value: 0.8259736371824636
name: Spearman Dot
- type: pearson_max
value: 0.8608857207512975
name: Pearson Max
- type: spearman_max
value: 0.8662860178080238
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8594405198312016
name: Pearson Cosine
- type: spearman_cosine
value: 0.8648571300070264
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8574291650964095
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8598780673781499
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8574540367546871
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8600722932569861
name: Spearman Euclidean
- type: pearson_dot
value: 0.822340474813523
name: Pearson Dot
- type: spearman_dot
value: 0.8226609928783558
name: Spearman Dot
- type: pearson_max
value: 0.8594405198312016
name: Pearson Max
- type: spearman_max
value: 0.8648571300070264
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.8506120561071212
name: Pearson Cosine
- type: spearman_cosine
value: 0.8575982860981437
name: Spearman Cosine
- type: pearson_manhattan
value: 0.852829777566948
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8552667517015687
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8526934293405145
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8551077930316164
name: Spearman Euclidean
- type: pearson_dot
value: 0.7943956137623474
name: Pearson Dot
- type: spearman_dot
value: 0.7963976287579885
name: Spearman Dot
- type: pearson_max
value: 0.852829777566948
name: Pearson Max
- type: spearman_max
value: 0.8575982860981437
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 128
type: sts-dev-128
metrics:
- type: pearson_cosine
value: 0.8410977354989039
name: Pearson Cosine
- type: spearman_cosine
value: 0.850480817077266
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8461619224798919
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8490393633313068
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8458138708136093
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.848719989437845
name: Spearman Euclidean
- type: pearson_dot
value: 0.7755878071062363
name: Pearson Dot
- type: spearman_dot
value: 0.7755629190322909
name: Spearman Dot
- type: pearson_max
value: 0.8461619224798919
name: Pearson Max
- type: spearman_max
value: 0.850480817077266
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 64
type: sts-dev-64
metrics:
- type: pearson_cosine
value: 0.8176550213032908
name: Pearson Cosine
- type: spearman_cosine
value: 0.8307913870285043
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8291830276998975
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8320477651805375
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8311109004860973
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8333955109708812
name: Spearman Euclidean
- type: pearson_dot
value: 0.7153413665605783
name: Pearson Dot
- type: spearman_dot
value: 0.7181274999679498
name: Spearman Dot
- type: pearson_max
value: 0.8311109004860973
name: Pearson Max
- type: spearman_max
value: 0.8333955109708812
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.8491592809545866
name: Pearson Cosine
- type: spearman_cosine
value: 0.8568871215102605
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8572052385387118
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.856617432589014
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8568623186549655
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8567096295439565
name: Spearman Euclidean
- type: pearson_dot
value: 0.7968828934121807
name: Pearson Dot
- type: spearman_dot
value: 0.7879173370882538
name: Spearman Dot
- type: pearson_max
value: 0.8572052385387118
name: Pearson Max
- type: spearman_max
value: 0.8568871215102605
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.8507070298067174
name: Pearson Cosine
- type: spearman_cosine
value: 0.8575370129160172
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8564033014649287
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8560352984315738
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8561906595447021
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8560701630452845
name: Spearman Euclidean
- type: pearson_dot
value: 0.7973312469719326
name: Pearson Dot
- type: spearman_dot
value: 0.7873345752731498
name: Spearman Dot
- type: pearson_max
value: 0.8564033014649287
name: Pearson Max
- type: spearman_max
value: 0.8575370129160172
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.8467375811334358
name: Pearson Cosine
- type: spearman_cosine
value: 0.8523459221020806
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8515524299355154
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8516309696270962
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8505975029491393
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8504082169041302
name: Spearman Euclidean
- type: pearson_dot
value: 0.7756647219222156
name: Pearson Dot
- type: spearman_dot
value: 0.7687165011432322
name: Spearman Dot
- type: pearson_max
value: 0.8515524299355154
name: Pearson Max
- type: spearman_max
value: 0.8523459221020806
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.8377317518267889
name: Pearson Cosine
- type: spearman_cosine
value: 0.84715184876888
name: Spearman Cosine
- type: pearson_manhattan
value: 0.846568244977152
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8487991796570058
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8456229087328332
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.847227591472
name: Spearman Euclidean
- type: pearson_dot
value: 0.7502527212449147
name: Pearson Dot
- type: spearman_dot
value: 0.7415962106597614
name: Spearman Dot
- type: pearson_max
value: 0.846568244977152
name: Pearson Max
- type: spearman_max
value: 0.8487991796570058
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.8173604263806156
name: Pearson Cosine
- type: spearman_cosine
value: 0.8315612974155435
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8319781289166863
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8347311175148256
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8334921243463637
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8350960592133633
name: Spearman Euclidean
- type: pearson_dot
value: 0.6935445265890855
name: Pearson Dot
- type: spearman_dot
value: 0.6843746062699552
name: Spearman Dot
- type: pearson_max
value: 0.8334921243463637
name: Pearson Max
- type: spearman_max
value: 0.8350960592133633
name: Spearman Max
---
# SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [l3cube-pune/indic-sentence-similarity-sbert](https://huggingface.co./l3cube-pune/indic-sentence-similarity-sbert) on the [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [l3cube-pune/indic-sentence-similarity-sbert](https://huggingface.co./l3cube-pune/indic-sentence-similarity-sbert) <!-- at revision b07ef91a96390f3e35ce94ddb42340861519bf07 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ammumadhu/indic-bert-nli-matryoshka")
# Run inference
sentences = [
'Then he ran.',
'He then started to run.',
'A man plays the flute.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8609 |
| **spearman_cosine** | **0.8663** |
| pearson_manhattan | 0.8587 |
| spearman_manhattan | 0.8612 |
| pearson_euclidean | 0.8585 |
| spearman_euclidean | 0.8611 |
| pearson_dot | 0.8259 |
| spearman_dot | 0.826 |
| pearson_max | 0.8609 |
| spearman_max | 0.8663 |
#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8594 |
| **spearman_cosine** | **0.8649** |
| pearson_manhattan | 0.8574 |
| spearman_manhattan | 0.8599 |
| pearson_euclidean | 0.8575 |
| spearman_euclidean | 0.8601 |
| pearson_dot | 0.8223 |
| spearman_dot | 0.8227 |
| pearson_max | 0.8594 |
| spearman_max | 0.8649 |
#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8506 |
| **spearman_cosine** | **0.8576** |
| pearson_manhattan | 0.8528 |
| spearman_manhattan | 0.8553 |
| pearson_euclidean | 0.8527 |
| spearman_euclidean | 0.8551 |
| pearson_dot | 0.7944 |
| spearman_dot | 0.7964 |
| pearson_max | 0.8528 |
| spearman_max | 0.8576 |
#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8411 |
| **spearman_cosine** | **0.8505** |
| pearson_manhattan | 0.8462 |
| spearman_manhattan | 0.849 |
| pearson_euclidean | 0.8458 |
| spearman_euclidean | 0.8487 |
| pearson_dot | 0.7756 |
| spearman_dot | 0.7756 |
| pearson_max | 0.8462 |
| spearman_max | 0.8505 |
#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8177 |
| **spearman_cosine** | **0.8308** |
| pearson_manhattan | 0.8292 |
| spearman_manhattan | 0.832 |
| pearson_euclidean | 0.8311 |
| spearman_euclidean | 0.8334 |
| pearson_dot | 0.7153 |
| spearman_dot | 0.7181 |
| pearson_max | 0.8311 |
| spearman_max | 0.8334 |
#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8492 |
| **spearman_cosine** | **0.8569** |
| pearson_manhattan | 0.8572 |
| spearman_manhattan | 0.8566 |
| pearson_euclidean | 0.8569 |
| spearman_euclidean | 0.8567 |
| pearson_dot | 0.7969 |
| spearman_dot | 0.7879 |
| pearson_max | 0.8572 |
| spearman_max | 0.8569 |
#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8507 |
| **spearman_cosine** | **0.8575** |
| pearson_manhattan | 0.8564 |
| spearman_manhattan | 0.856 |
| pearson_euclidean | 0.8562 |
| spearman_euclidean | 0.8561 |
| pearson_dot | 0.7973 |
| spearman_dot | 0.7873 |
| pearson_max | 0.8564 |
| spearman_max | 0.8575 |
#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8467 |
| **spearman_cosine** | **0.8523** |
| pearson_manhattan | 0.8516 |
| spearman_manhattan | 0.8516 |
| pearson_euclidean | 0.8506 |
| spearman_euclidean | 0.8504 |
| pearson_dot | 0.7757 |
| spearman_dot | 0.7687 |
| pearson_max | 0.8516 |
| spearman_max | 0.8523 |
#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8377 |
| **spearman_cosine** | **0.8472** |
| pearson_manhattan | 0.8466 |
| spearman_manhattan | 0.8488 |
| pearson_euclidean | 0.8456 |
| spearman_euclidean | 0.8472 |
| pearson_dot | 0.7503 |
| spearman_dot | 0.7416 |
| pearson_max | 0.8466 |
| spearman_max | 0.8488 |
#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8174 |
| **spearman_cosine** | **0.8316** |
| pearson_manhattan | 0.832 |
| spearman_manhattan | 0.8347 |
| pearson_euclidean | 0.8335 |
| spearman_euclidean | 0.8351 |
| pearson_dot | 0.6935 |
| spearman_dot | 0.6844 |
| pearson_max | 0.8335 |
| spearman_max | 0.8351 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 10,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 18.8 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.84 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.39 tokens</li><li>max: 38 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------------------------------------------------------------------------|:--------------------------------------------------|:-------------------------------------------------------|
| <code>Side view of a female triathlete during the run.</code> | <code>A woman runs</code> | <code>A man sits</code> |
| <code>Confused person standing in the middle of the trolley tracks trying to figure out the signs.</code> | <code>A person is on the tracks.</code> | <code>A man sits in an airplane.</code> |
| <code>A woman in a black shirt, jean shorts and white tennis shoes is bowling.</code> | <code>A woman is bowling in casual clothes</code> | <code>A woman bowling wins an outfit of clothes</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 18.54 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.97 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.59 tokens</li><li>max: 29 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 0.3797 | 30 | 7.9432 | 4.2806 | 0.8509 | 0.8570 | 0.8633 | 0.8311 | 0.8644 | - | - | - | - | - |
| 0.7595 | 60 | 6.1701 | 3.9498 | 0.8505 | 0.8576 | 0.8649 | 0.8308 | 0.8663 | - | - | - | - | - |
| 1.0 | 79 | - | - | - | - | - | - | - | 0.8472 | 0.8523 | 0.8575 | 0.8316 | 0.8569 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |