--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9537366548042705 --- # swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co./microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1308 - Accuracy: 0.9537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1427 | 1.0 | 11 | 0.5408 | 0.8562 | | 0.3939 | 2.0 | 22 | 0.2092 | 0.9295 | | 0.2291 | 3.0 | 33 | 0.1556 | 0.9445 | | 0.1439 | 4.0 | 44 | 0.1308 | 0.9537 | | 0.1298 | 5.0 | 55 | 0.1307 | 0.9516 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3